Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders
Publication year
2016Author(s)
Number of pages
7 p.
Source
European Journal of Human Genetics, 24, 10, (2016), pp. 1460-1466ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Neurology
Human Genetics
Paediatrics - OUD tm 2017
Journal title
European Journal of Human Genetics
Volume
vol. 24
Issue
iss. 10
Languages used
English (eng)
Page start
p. 1460
Page end
p. 1466
Subject
Radboudumc 12: Sensory disorders DCMN: Donders Center for Medical Neuroscience; Radboudumc 3: Disorders of movement DCMN: Donders Center for Medical Neuroscience; Radboudumc 9: Rare cancers RIHS: Radboud Institute for Health SciencesAbstract
Cerebellar ataxia (CA) and hereditary spastic paraplegia (HSP) are two of the most prevalent motor disorders with extensive locus and allelic heterogeneity. We implemented clinical exome sequencing, followed by filtering data for a 'movement disorders' gene panel, as a generic test to increase variant detection in 76 patients with these disorders. Segregation analysis or phenotypic re-evaluation was utilized to substantiate findings. Disease-causing variants were identified in 9 of 28 CA patients, and 8 of 48 HSP patients. In addition, possibly disease-causing variants were identified in 1 and 8 of the remaining CA and HSP patients, respectively. In 10 patients with CA, the total disease-causing or possibly disease-causing variants were detected in 8 different genes, whereas 16 HSP patients had such variants in 12 different genes. In the majority of cases, the identified variants were compatible with the patient phenotype. Interestingly, in some patients variants were identified in genes hitherto related to other movement disorders, such as TH variants in two siblings with HSP. In addition, rare disorders were uncovered, for example, a second case of HSP caused by a VCP variant. For some patients, exome sequencing results had implications for treatment, exemplified by the favorable L-DOPA treatment in a patient with HSP due to ATP13A2 variants (Parkinson type 9). Thus, clinical exome sequencing in this cohort of CA and HSP patients suggests broadening of disease spectra, revealed novel gene-disease associations, and uncovered unanticipated rare disorders. In addition, clinical exome sequencing results have shown their value in guiding practical patient management.
This item appears in the following Collection(s)
- Academic publications [234419]
- Electronic publications [117392]
- Faculty of Medical Sciences [89250]
- Open Access publications [84338]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.