Publication year
2015Source
Human Molecular Genetics, 24, 16, (2015), pp. 4636-4647ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Neurology
Journal title
Human Molecular Genetics
Volume
vol. 24
Issue
iss. 16
Page start
p. 4636
Page end
p. 4647
Subject
Radboudumc 3: Disorders of movement DCMN: Donders Center for Medical NeuroscienceAbstract
Congenital myopathies are genetically and clinically heterogeneous conditions causing severe muscle weakness, and mutations in the ryanodine receptor gene (RYR1) represent the most frequent cause of these conditions. A common feature of diseases caused by recessive RYR1 mutations is a decrease of ryanodine receptor 1 protein content in muscle. The aim of the present investigation was to gain mechanistic insight into the causes of this reduced ryanodine receptor 1. We found that muscle biopsies of patients with recessive RYR1 mutations exhibit decreased expression of muscle-specific microRNAs, increased DNA methylation and increased expression of class II histone deacetylases. Transgenic mouse muscle fibres over-expressing HDAC-4/HDAC-5 exhibited decreased expression of RYR1 and of muscle-specific miRNAs, whereas acute knock-down of RYR1 in mouse muscle fibres by siRNA caused up-regulation of HDAC-4/HDAC-5. Intriguingly, increased class II HDAC expression and decreased ryanodine receptor protein and miRNAs expression were also observed in muscles of patients with nemaline myopathy, another congenital neuromuscular disorder. Our results indicate that a common pathophysiological pathway caused by epigenetic changes is activated in some forms of congenital neuromuscular disorders.
This item appears in the following Collection(s)
- Academic publications [202914]
- Faculty of Medical Sciences [80065]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.