Carotid plaque elasticity estimation using ultrasound elastography, MRI, and inverse FEA - A numerical feasibility study
Publication year
2015Source
Medical Engineering & Physics, 37, 8, (2015), pp. 801-7ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Medical Imaging
Paediatrics - OUD tm 2017
Journal title
Medical Engineering & Physics
Volume
vol. 37
Issue
iss. 8
Page start
p. 801
Page end
p. 7
Subject
Radboudumc 16: Vascular damage RIHS: Radboud Institute for Health SciencesAbstract
The material properties of atherosclerotic plaques govern the biomechanical environment, which is associated with rupture-risk. We investigated the feasibility of noninvasively estimating carotid plaque component material properties through simulating ultrasound (US) elastography and in vivo magnetic resonance imaging (MRI), and solving the inverse problem with finite element analysis. 2D plaque models were derived from endarterectomy specimens of nine patients. Nonlinear neo-Hookean models (tissue elasticity C1) were assigned to fibrous intima, wall (i.e., media/adventitia), and lipid-rich necrotic core. Finite element analysis was used to simulate clinical cross-sectional US strain imaging. Computer-simulated, single-slice in vivo MR images were segmented by two MR readers. We investigated multiple scenarios for plaque model elasticity, and consistently found clear separations between estimated tissue elasticity values. The intima C1 (160 kPa scenario) was estimated as 125.8 +/- 19.4 kPa (reader 1) and 128.9 +/- 24.8 kPa (reader 2). The lipid-rich necrotic core C1 (5 kPa) was estimated as 5.6 +/- 2.0 kPa (reader 1) and 8.5 +/- 4.5 kPa (reader 2). A scenario with a stiffer wall yielded similar results, while realistic US strain noise and rotating the models had little influence, thus demonstrating robustness of the procedure. The promising findings of this computer-simulation study stimulate applying the proposed methodology in a clinical setting.
This item appears in the following Collection(s)
- Academic publications [205116]
- Faculty of Medical Sciences [81054]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.