Submembranous recruitment of creatine kinase B supports formation of dynamic actin-based protrusions of macrophages and relies on its C-terminal flexible loop
Fulltext:
154023.pdf
Embargo:
until further notice
Size:
4.200Mb
Format:
PDF
Description:
Publisher’s version
Publication year
2015Source
European Journal of Cell Biology, 94, 2, (2015), pp. 114-27ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Cell Biology (UMC)
Biochemistry (UMC)
CMBI
Journal title
European Journal of Cell Biology
Volume
vol. 94
Issue
iss. 2
Page start
p. 114
Page end
p. 27
Subject
Radboudumc 0: Other Research RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 19: Nanomedicine RIMLS: Radboud Institute for Molecular Life SciencesAbstract
Subcellular partitioning of creatine kinase contributes to the formation of patterns in intracellular ATP distribution and the fuelling of cellular processes with a high and sudden energy demand. We have previously shown that brain-type creatine kinase (CK-B) accumulates at the phagocytic cup in macrophages where it is involved in the compartmentalized generation of ATP for actin remodeling. Here, we report that CK-B catalytic activity also helps in the formation of protrusive ruffle structures which are actin-dependent and abundant on the surface of both unstimulated and LPS-activated macrophages. Recruitment of CK-B to these structures occurred transiently and inhibition of the enzyme's catalytic activity with cyclocreatine led to a general smoothening of surface morphology as visualized by scanning electron microscopy. Comparison of the dynamics of distribution of YFP-tagged CK-mutants and isoforms by live imaging revealed that amino acid residues in the C-terminal segment (aa positions 323-330) that forms one of the protein's two mobile loops are involved in partitioning over inner regions of the cytosol and nearby sites where membrane protrusions occur during induction of phagocytic cup formation. Although wt CK-B, muscle-type CK (CK-M), and a catalytically dead CK-B-E232Q mutant with intact loop region were normally recruited from the cytosolic pool, no dynamic transition to the phagocytic cup area was seen for the CK-homologue arginine kinase and a CK-B-D326A mutant protein. Bioinformatics analysis helped us to predict that conformational flexibility of the C-terminal loop, independent of conformational changes induced by substrate binding or catalytic activity, is likely involved in exposing the enzyme for binding at or near the sites of membrane protrusion formation.
This item appears in the following Collection(s)
- Academic publications [244168]
- Electronic publications [131142]
- Faculty of Medical Sciences [92874]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.