Radiomic feature clusters and Prognostic Signatures specific for Lung and Head &Neck cancer
Publication year
2015Source
Scientific Reports, 5, (2015), article 11044ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Radiation Oncology
Journal title
Scientific Reports
Volume
vol. 5
Subject
Radboudumc 9: Rare cancers RIHS: Radboud Institute for Health SciencesAbstract
Radiomics provides a comprehensive quantification of tumor phenotypes by extracting and mining large number of quantitative image features. To reduce the redundancy and compare the prognostic characteristics of radiomic features across cancer types, we investigated cancer-specific radiomic feature clusters in four independent Lung and Head &Neck (H) cancer cohorts (in total 878 patients). Radiomic features were extracted from the pre-treatment computed tomography (CT) images. Consensus clustering resulted in eleven and thirteen stable radiomic feature clusters for Lung and H cancer, respectively. These clusters were validated in independent external validation cohorts using rand statistic (Lung RS = 0.92, p < 0.001, H RS = 0.92, p < 0.001). Our analysis indicated both common as well as cancer-specific clustering and clinical associations of radiomic features. Strongest associations with clinical parameters: Prognosis Lung CI = 0.60 +/- 0.01, Prognosis H CI = 0.68 +/- 0.01; Lung histology AUC = 0.56 +/- 0.03, Lung stage AUC = 0.61 +/- 0.01, H HPV AUC = 0.58 +/- 0.03, H stage AUC = 0.77 +/- 0.02. Full utilization of these cancer-specific characteristics of image features may further improve radiomic biomarkers, providing a non-invasive way of quantifying and monitoring tumor phenotypic characteristics in clinical practice.
This item appears in the following Collection(s)
- Academic publications [234109]
- Electronic publications [116862]
- Faculty of Medical Sciences [89175]
- Open Access publications [83934]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.