Oligodendroglioma: pathology, molecular mechanisms and markers
Publication year
2015Source
Acta Neuropathologica, 129, 6, (2015), pp. 809-27ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Pathology
Journal title
Acta Neuropathologica
Volume
vol. 129
Issue
iss. 6
Page start
p. 809
Page end
p. 27
Subject
Radboudumc 9: Rare cancers RIMLS: Radboud Institute for Molecular Life SciencesAbstract
For nearly a century, the diagnosis and grading of oligodendrogliomas and oligoastrocytomas has been based on histopathology alone. Roughly 20 years ago, the first glioma-associated molecular signature was found with complete chromosome 1p and 19q codeletion being particularly common in histologically classic oligodendrogliomas. Subsequently, this codeletion appeared to not only carry diagnostic, but also prognostic and predictive information, the latter aspect only recently resolved after carefully constructed clinical trials with very long follow-up times. More recently described biomarkers, including the non-balanced translocation leading to 1p/19q codeletion, promoter hypermethylation of the MGMT gene, mutations of the IDH1 or IDH2 gene, and mutations of FUBP1 (on 1p) or CIC (on 19q), have greatly enhanced our understanding of oligodendroglioma biology, although their diagnostic, prognostic, and predictive roles are less clear. It has therefore been suggested that complete 1p/19q codeletion be required for the diagnosis of 'canonical oligodendroglioma'. This transition to an integrated morphological and molecular diagnosis may result in the disappearance of oligoastrocytoma as an entity, but brings new challenges as well. For instance it needs to be sorted out how (histopathological) criteria for grading of 'canonical oligodendrogliomas' should be adapted, how pediatric oligodendrogliomas (known to lack codeletions) should be defined, which platforms and cut-off levels should ideally be used for demonstration of particular molecular aberrations, and how the diagnosis of oligodendroglioma should be made in centers/countries where molecular diagnostics is not available. Meanwhile, smart integration of morphological and molecular information will lead to recognition of biologically much more uniform groups within the spectrum of diffuse gliomas and thereby facilitate tailored treatments for individual patients.
This item appears in the following Collection(s)
- Academic publications [227244]
- Electronic publications [108520]
- Faculty of Medical Sciences [86731]
- Open Access publications [77772]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.