Publication year
2015Source
British Journal of Dermatology, 172, 2, (2015), pp. 392-9ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Clinical Pharmacy
Journal title
British Journal of Dermatology
Volume
vol. 172
Issue
iss. 2
Page start
p. 392
Page end
p. 9
Subject
Radboudumc 4: lnfectious Diseases and Global Health RIHS: Radboud Institute for Health SciencesAbstract
BACKGROUND: Little is known about the impact of engineered nanoparticles (ENPs) on skin sensitization caused by chemicals. OBJECTIVES: We determined the ability of different ENPs (TiO2 , Ag and SiO2 ) and aged paint particles containing ENPs to modulate dermal sensitization by a known potent dermal sensitizer. METHODS: The fur of BALB/c mice in the area around the ears was cut with scissors 1 day prior to topical exposure to ENPs (0.4, 4 or 40 mg mL(-1) ), paint particles containing ENPs (4 mg mL(-1) ) or vehicle (day 0). On days 1, 2 and 3, the mice received dermal applications on the back of both ears of 2,4-dinitrochlorobenzene (DNCB) or vehicle. The stimulation index (SI) was calculated on day 6. RESULTS: Topical exposure to TiO2 , Ag or SiO2 ENPs, or aged paint particles followed by vehicle treatment as a control, did not influence the SI. When 4 mg mL(-1) TiO2 ENPs were applied prior to DNCB sensitization, we found an increased SI compared with vehicle-exposed mice prior to DNCB sensitization. Furthermore, an increased titanium concentration was found in the draining lymph node cells of this group. Topical exposure to Ag or SiO2 ENPs or aged paint particles prior to DNCB sensitization did not influence the SI. CONCLUSIONS: We have demonstrated that topical exposure to TiO2 ENPs increases chemical-induced dermal sensitization.
This item appears in the following Collection(s)
- Academic publications [244084]
- Faculty of Medical Sciences [92872]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.