Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs.
Publication year
2015Source
European Cells & Materials, 29, (2015), pp. 314-329ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Dentistry
Journal title
European Cells & Materials
Volume
vol. 29
Page start
p. 314
Page end
p. 329
Subject
Radboudumc 10: Reconstructive and regenerative medicine RIMLS: Radboud Institute for Molecular Life SciencesAbstract
It has been reported that surface microstructural dimensions can influence the osteoinductivity of calcium phosphates (CaPs), and osteoclasts may play a role in this process. We hypothesised that surface structural dimensions of </= 1 mum trigger osteoinduction and osteoclast formation irrespective of macrostructure (e.g., concavities, interconnected macropores, interparticle space) or surface chemistry. To test this, planar discs made of biphasic calcium phosphate (BCP: 80 % hydroxyapatite, 20 % tricalcium phosphate) were prepared with different surface structural dimensions - either ~ 1 mum (BCP1150) or ~ 2-4 mum (BCP1300) - and no macropores or concavities. A third material was made by sputter coating BCP1150 with titanium (BCP1150Ti), thereby changing its surface chemistry but preserving its surface structure and chemical reactivity. After intramuscular implantation in 5 dogs for 12 weeks, BCP1150 formed ectopic bone in 4 out of 5 samples, BCP1150Ti formed ectopic bone in 3 out of 5 samples, and BCP1300 formed no ectopic bone in any of the 5 samples. In vivo, large multinucleated osteoclast-like cells densely colonised BCP1150, smaller osteoclast-like cells formed on BCP1150Ti, and osteoclast-like cells scarcely formed on BCP1300. In vitro, RAW264.7 cells cultured on the surface of BCP1150 and BCP1150Ti in the presence of osteoclast differentiation factor RANKL (receptor activator for NF-kappaB ligand) proliferated then differentiated into multinucleated osteoclast-like cells with positive tartrate resistant acid phosphatase (TRAP) activity. However, cell proliferation, fusion, and TRAP activity were all significantly inhibited on BCP1300. These results indicate that of the material parameters tested - namely, surface microstructure, macrostructure, and surface chemistry - microstructural dimensions are critical in promoting osteoclastogenesis and triggering ectopic bone formation.
This item appears in the following Collection(s)
- Academic publications [202914]
- Electronic publications [101091]
- Faculty of Medical Sciences [80065]
- Open Access publications [69750]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.