Publication year
2015Source
American Journal of Nephrology, 42, 2, (2015), pp. 158-167ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Nephrology
Journal title
American Journal of Nephrology
Volume
vol. 42
Issue
iss. 2
Page start
p. 158
Page end
p. 167
Subject
Radboudumc 0: Other Research RIHS: Radboud Institute for Health Sciences; Radboudumc 11: Renal disorders RIHS: Radboud Institute for Health SciencesAbstract
BACKGROUND: Risk prediction models can be used to inform patients undergoing renal replacement therapy about their survival chances. Easily available predictors such as registry data are most convenient, but their predictive value may be limited. We aimed to improve a simple prediction model based on registry data by incrementally adding sets of clinical and laboratory variables. METHODS: Our data set includes 1,835 Dutch patients from the Netherlands Cooperative Study on the Adequacy of Dialysis. The potential survival predictors were categorized on availability. The first category includes easily available clinical data. The second set includes laboratory values like albumin. The most laborious category contains glomerular filtration rate (GFR) and Kt/V. Missing values were substituted using multiple imputation. Within 1,225 patients, we recalibrated the registry model and subsequently added parameter sets using multivariate Cox regression analyses with backward selection. On the other 610 patients, calibration and discrimination (C-index, integrated discrimination improvement (IDI) index and net reclassification improvement (NRI) index) were assessed for all models. RESULTS: The recalibrated registry model showed adequate calibration and discrimination (C-index = 0.724). Adding easily available parameters resulted in a model with 10 predictors, with similar calibration and improved discrimination (C-index = 0.784). The IDI and NRI indices confirmed this, especially for short-term survival. Adding laboratory values resulted in an alternative model with similar discrimination (C-index = 0.788), and only the NRI index showed minor improvement. Adding GFR and Kt/V as candidate predictors did not result in a different model. CONCLUSION: A simple model based on registry data was enhanced by adding easily available clinical parameters.
This item appears in the following Collection(s)
- Academic publications [234419]
- Faculty of Medical Sciences [89251]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.