High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation

Fulltext:
152294.pdf
Embargo:
until further notice
Size:
1.954Mb
Format:
PDF
Description:
Publisher’s version
Publication year
2015Source
Translational Research, 166, 6, (2015), pp. 639-649.e1ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Neurology
Laboratory Medicine
Paediatrics - OUD tm 2017
Journal title
Translational Research
Volume
vol. 166
Issue
iss. 6
Page start
p. 639
Page end
p. 649.e1
Subject
Radboudumc 3: Disorders of movement DCMN: Donders Center for Medical Neuroscience; Radboudumc 6: Metabolic Disorders RIMLS: Radboud Institute for Molecular Life SciencesAbstract
Diagnostic screening of the congenital disorders of glycosylation (CDG) generally involves isoelectric focusing of plasma transferrin, a robust method easily integrated in medical laboratories. Structural information is needed as the next step, as required for the challenging classification of Golgi glycosylation defects (CDG-II). Here, we present the use of high-resolution nano liquid chromatography-chip (C8)-quadrupole time of flight mass spectrometry (nanoLC-chip [C8]-QTOF MS) for protein-specific glycoprofiling of intact transferrin, which allows screening and direct diagnosis of a number of CDG-II defects. Transferrin was immunopurified from 10 muL of plasma and analyzed by nanoLC-chip-QTOF MS. Charge distribution raw data were deconvoluted by Mass Hunter software to reconstructed mass spectra. Plasma samples were processed from controls (n = 56), patients with known defects (n = 30), and patients with secondary (n = 6) or unsolved (n = 3) cause of abnormal glycosylation. This fast and robust method, established for CDG diagnostics, requires only 2 hours analysis time, including sample preparation and analysis. For CDG-I patients, the characteristic loss of complete N-glycans could be detected with high sensitivity. Known CDG-II defects (phosphoglucomutase 1 [PGM1-CDG], mannosyl (alpha-1,6-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase [MGAT2-CDG], beta-1,4-galactosyltransferase 1 [B4GALT1-CDG], CMP-sialic acid transporter [SLC35A1-CDG], UDP-galactose transporter [SLC35A2-CDG] and mannosyl-oligosaccharide 1,2-alpha-mannosidase [MAN1B1-CDG]) resulted in characteristic diagnostic profiles. Moreover, in the group of Golgi trafficking defects and unsolved CDG-II patients, distinct profiles were observed, which facilitate identification of the specific CDG subtype. The established QTOF method affords high sensitivity and resolution for the detection of complete glycan loss and structural assignment of truncated glycans in a single assay. The speed and robustness allow its clinical diagnostic application as a first step in the diagnostic procedure for CDG defects.
This item appears in the following Collection(s)
- Academic publications [229134]
- Electronic publications [111496]
- Faculty of Medical Sciences [87758]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.