Exercise training improves liver steatosis in mice
Publication year
2015Source
Nutrition & Metabolism, 12, (2015), pp. 29ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Medical Imaging
Journal title
Nutrition & Metabolism
Volume
vol. 12
Page start
p. 29
Subject
Radboudumc 15: Urological cancers RIMLS: Radboud Institute for Molecular Life SciencesAbstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is rapidly turning into the most common liver disorder worldwide. One of the strategies that has been shown to effectively improve NAFLD is regular exercise, which seems to lower steatosis partly independent of weight loss. However, limited data are available about the mechanisms involved. The aim of the present study was to identify the mechanisms underlying the effect of regular exercise on liver steatosis. METHODS: Non-obese male mice were rendered steatotic by feeding a sucrose-enriched choline-deficient diet. They were then subjected to daily treadmill running for three weeks, whereas the control mice remained sedentary. RESULTS: Compared to the untrained mice, trained mice showed similar adipose tissue mass but had significantly reduced size of lipid droplets in the liver coupled with a reduction in liver triglyceride content (~30 %, P < 0.05). Levels of various plasma lipid parameters and plasma glucose were similar between the trained and untrained mice, whereas levels of hepatic glycogen were significantly higher in the trained mice. Hepatic triglyceride secretion rate and de novo lipogenesis were unchanged between the two sets of mice, as were indicators of lipolysis and autophagy. Finally, whole genome expression profiling indicated a mild stimulatory effect of exercise training on PPARalpha-mediated regulation of oxidative metabolism, including fatty acid oxidation. CONCLUSIONS: Taken together, our study suggests that the lowering of hepatic steatosis by repeated exercise is likely due to activation of fuel oxidation pathways in liver.
This item appears in the following Collection(s)
- Academic publications [203608]
- Electronic publications [101944]
- Faculty of Medical Sciences [80231]
- Open Access publications [70663]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.