The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel.
Publication year
2002Source
Journal of Biological Chemistry, 277, 44, (2002), pp. 41473-9ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Pharmacology-Toxicology
Cell Physiology
Physiology
Journal title
Journal of Biological Chemistry
Volume
vol. 277
Issue
iss. 44
Page start
p. 41473
Page end
p. 9
Subject
Regulation of salt and water reabsorption in the renal collecting duct; Regulatie water en zouttransport in de verzamelbuis van de nierAbstract
In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To determine the role of the putative kinase sites in the trafficking and hormonal regulation of human AQP2, three putative casein kinase II (Ser-148, Ser-229, Thr-244), one PKC (Ser-231), and one protein kinase A (Ser-256) site were altered to mimic a constitutively non-phosphorylated/phosphorylated state and were expressed in Madin-Darby canine kidney cells. Except for Ser-256 mutants, seven correctly folded AQP2 kinase mutants trafficked as wild-type AQP2 to the apical membrane via forskolin-sensitive intracellular vesicles. With or without forskolin, AQP2-Ser-256A was localized in intracellular vesicles, whereas AQP2-S256D was localized in the apical membrane. Phorbol 12-myristate 13-acetate-induced PKC activation following forskolin treatment resulted in vesicular distribution of all AQP2 kinase mutants, while all were still phosphorylated at Ser-256. Our data indicate that in collecting duct cells, AQP2 trafficking to vasopressin-sensitive vesicles is phosphorylation-independent, that phosphorylation of Ser-256 is necessary and sufficient for expression of AQP2 in the apical membrane, and that PMA-induced PKC-mediated endocytosis of AQP2 is independent of the AQP2 phosphorylation state.
This item appears in the following Collection(s)
- Academic publications [246764]
- Electronic publications [134215]
- Faculty of Medical Sciences [93461]
- Open Access publications [107738]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.