Functional analysis of MSH2 unclassified variants found in suspected Lynch syndrome patients reveals pathogenicity due to attenuated mismatch repair
Publication year
2014Source
Journal of Medical Genetics, 51, 4, (2014), pp. 245-53ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Human Genetics
Pathology
Journal title
Journal of Medical Genetics
Volume
vol. 51
Issue
iss. 4
Page start
p. 245
Page end
p. 53
Subject
Radboudumc 14: Tumours of the digestive tract RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 17: Women's cancers RIHS: Radboud Institute for Health Sciences; Radboudumc 17: Women's cancers RIMLS: Radboud Institute for Molecular Life SciencesAbstract
BACKGROUND: Lynch syndrome, an autosomal-dominant disorder characterised by high colorectal and endometrial cancer risks, is caused by inherited mutations in DNA mismatch repair (MMR) genes. Mutations fully abrogating gene function are unambiguously disease causing. However, missense mutations often have unknown functional implications, hampering genetic counselling. We have applied a novel approach to study three MSH2 unclassified variants (UVs) found in Dutch families with suspected Lynch syndrome. METHODS: The three mutations were recreated in the endogenous Msh2 gene in mouse embryonic stem cells by oligonucleotide-directed gene modification. The effect of the UVs on MMR activity was then tested using a set of functional assays interrogating the main MMR functions. RESULTS: We recreated and functionally tested three MSH2 UVs: MSH2-Y165D (c.493T>G), MSH2-Q690E (c.2068C>G) and MSH2-M813V (c.2437A>G). We observed reduced levels of MSH2-Y165D and MSH2-Q690E but not MSH2-M813V proteins. MSH2-M813V was able to support all MMR functions similar to wild-type MSH2, whereas MSH2-Y165D and MSH2-Q690E showed partial defects. CONCLUSIONS: Based on the results from our functional assays, we conclude that the MSH2-M813V variant is not disease causing. The MSH2-Y165D and MSH2-Q690E variants affect MMR function and are therefore likely the underlying cause of familial cancer predisposition. Since the MMR defect is partial, these variants may represent low penetrance alleles.
This item appears in the following Collection(s)
- Academic publications [243179]
- Faculty of Medical Sciences [92416]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.