Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs
Fulltext:
137793.pdf
Embargo:
until further notice
Size:
1.804Mb
Format:
PDF
Description:
Publisher’s version
Publication year
2014Source
Journal of Biomechanics, 47, 9, (2014), pp. 2149-56ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Orthopaedics
Journal title
Journal of Biomechanics
Volume
vol. 47
Issue
iss. 9
Page start
p. 2149
Page end
p. 56
Subject
Radboudumc 10: Reconstructive and regenerative medicine RIHS: Radboud Institute for Health SciencesAbstract
Biomechanical factors play an important role in the growth, regulation, and maintenance of engineered biomaterials and tissues. While physical factors (e.g. applied mechanical strain) can accelerate regeneration, and knowledge of tissue properties often guide the design of custom materials with tailored functionality, the distribution of mechanical quantities (e.g. strain) throughout native and repair tissues is largely unknown. Here, we directly quantify distributions of strain using noninvasive magnetic resonance imaging (MRI) throughout layered agarose constructs, a model system for articular cartilage regeneration. Bulk mechanical testing, giving both instantaneous and equilibrium moduli, was incapable of differentiating between the layered constructs with defined amounts of 2% and 4% agarose. In contrast, MRI revealed complex distributions of strain, with strain transfer to softer (2%) agarose regions, resulting in amplified magnitudes. Comparative studies using finite element simulations and mixture (biphasic) theory confirmed strain distributions in the layered agarose. The results indicate that strain transfer to soft regions is possible in vivo as the biomaterial and tissue changes during regeneration and maturity. It is also possible to modulate locally the strain field that is applied to construct-embedded cells (e.g. chondrocytes) using stratified agarose constructs.
This item appears in the following Collection(s)
- Academic publications [244127]
- Electronic publications [131133]
- Faculty of Medical Sciences [92874]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.