
Fulltext:
135907.pdf
Embargo:
until further notice
Size:
910.3Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2014Source
NeuroImage, 101, (2014), pp. 738-49ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Cognitive Neuroscience
Journal title
NeuroImage
Volume
vol. 101
Page start
p. 738
Page end
p. 49
Subject
Radboudumc 13: Stress-related disorders DCMN: Donders Center for Medical NeuroscienceAbstract
Increasingly-large datasets (for example, the resting-state fMRI data from the Human Connectome Project) are demanding analyses that are problematic because of the sheer scale of the aggregate data. We present two approaches for applying group-level PCA; both give a close approximation to the output of PCA applied to full concatenation of all individual datasets, while having very low memory requirements regardless of the number of datasets being combined. Across a range of realistic simulations, we find that in most situations, both methods are more accurate than current popular approaches for analysis of multi-subject resting-state fMRI studies. The group-PCA output can be used to feed into a range of further analyses that are then rendered practical, such as the estimation of group-averaged voxelwise connectivity, group-level parcellation, and group-ICA.
This item appears in the following Collection(s)
- Academic publications [226902]
- Electronic publications [108458]
- Faculty of Medical Sciences [86456]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.