Glucose controls morphodynamics of LPS-stimulated macrophages
Publication year
2014Source
PLoS One, 9, 5, (2014), article e96786ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Cell Biology (UMC)
Journal title
PLoS One
Volume
vol. 9
Issue
iss. 5
Subject
Radboudumc 0: Other Research RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 19: Nanomedicine RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 3: Disorders of movement RIMLS: Radboud Institute for Molecular Life SciencesAbstract
Macrophages constantly undergo morphological changes when quiescently surveying the tissue milieu for signs of microbial infection or damage, or after activation when they are phagocytosing cellular debris or foreign material. These morphofunctional alterations require active actin cytoskeleton remodeling and metabolic adaptation. Here we analyzed RAW 264.7 and Maf-DKO macrophages as models to study whether there is a specific association between aspects of carbohydrate metabolism and actin-based processes in LPS-stimulated macrophages. We demonstrate that the capacity to undergo LPS-induced cell shape changes and to phagocytose complement-opsonized zymosan (COZ) particles does not depend on oxidative phosphorylation activity but is fueled by glycolysis. Different macrophage activities like spreading, formation of cell protrusions, as well as phagocytosis of COZ, were thereby strongly reliant on the presence of low levels of extracellular glucose. Since global ATP production was not affected by rewiring of glucose catabolism and inhibition of glycolysis by 2-deoxy-D-glucose and glucose deprivation had differential effects, our observations suggest a non-metabolic role for glucose in actin cytoskeletal remodeling in macrophages, e.g. via posttranslational modification of receptors or signaling molecules, or other effects on the machinery that drives actin cytoskeletal changes. Our findings impute a decisive role for the nutrient state of the tissue microenvironment in macrophage morphodynamics.
This item appears in the following Collection(s)
- Academic publications [244280]
- Electronic publications [131245]
- Faculty of Medical Sciences [92906]
- Open Access publications [105260]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.