Monitoring pupil development by means of the Kalman filter and smoother based upon SEM state space modeling
Publication year
2000Source
Learning and Individual Differences, 11, 2, (2000), pp. 121-136ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
SW OZ BSI OGG
Faculteit der Sociale Wetenschappen
SW OZ BSI BO
SW OZ BSI OE
Journal title
Learning and Individual Differences
Volume
vol. 11
Issue
iss. 2
Page start
p. 121
Page end
p. 136
Subject
Developmental PsychopathologyAbstract
If test scores are collected from an individual pupil at different points in time and a state-space model is available for describing latent ability development over time, the Kalman filter and smoother turn out to be the optimal procedures for estimating the pupil's latent curves. The Kalman filter is implemented in the Nijmegen Pupil Monitoring System, LISKAL. The essentials of Kalman filtering and smoothing in comparison to traditional cross-sectional factor score estimators are explained, stressing unbiasedness considerations and the initialization problem. The state-space model is represented as an SEM (structural equation model) and estimated by means of an SEM program. The value of the Kalman filter and smoother in pupil monitoring is enhanced by specifying a “structured means” instead of the traditional “zero means” SEM model and by introducing random subject effects.
This item appears in the following Collection(s)
- Academic publications [227613]
- Faculty of Social Sciences [28417]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.