Publication year
2014Source
Tissue Engineering Part A, 20, 9-10, (2014), pp. 1542-9ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Biochemistry (UMC)
Urology
Journal title
Tissue Engineering Part A
Volume
vol. 20
Issue
iss. 9-10
Page start
p. 1542
Page end
p. 9
Subject
Radboudumc 10: Reconstructive and regenerative medicine RIMLS: Radboud Institute for Molecular Life Sciences; Radboudumc 15: Urological cancers RIMLS: Radboud Institute for Molecular Life SciencesAbstract
BACKGROUND: Hypospadias and urethral strictures are conditions requiring additional tissue for reconstruction. Due to a limited source of tissue, autologous skin and oral mucosa are frequently used. However, long-term follow-up studies demonstrated significant complications and diminished quality of life. Recently, a variety of tubular biodegradable biomaterials have been used. Cell seeding seems to be important to improve the host acceptance and neovascularization. OBJECTIVE: To compare in vivo performance of smooth muscle cell (SMC)-seeded and unseeded tubular collagen-based scaffolds in a rabbit urethral reconstruction model. MATERIALS AND METHODS: Sixteen New Zealand rabbits underwent an open-bladder biopsy for SMC harvesting. The SMCs were cultured for 3 weeks and labeled with ethynyldeoxyuridine (EdU). A 1-cm-length tubular collagen-based 0.5 wt% scaffold was seeded and cultured with SMCs and implantation in a rabbit model. Eight rabbits received SMC-seeded scaffolds for a 1-cm-length circumferential urethral repair, situated 1.5 cm from the meatus. After 1 and 3 months, four rabbits underwent a urethrography and were sacrificed. The penises underwent hematoxylin and eosin, immunohistochemistry, and EdU fluorescence staining. In the control group eight rabbits received acellular scaffolds. RESULTS: The SMC-seeded group presented one stricture at 1 month and one fistula at 3 months. Three strictures were present in the unseeded group at 1 month and one at 3 months. In the seeded group, more SMC expression and neovascularization was observed, and less mononuclear and giant cells could be found. All scaffolds showed luminal urothelial cell revetment. The detection of EdU-labeled SMCs revealed SMC transplantation survival. CONCLUSION: SMC-seeded tubular collagen scaffolds improved urethral regeneration in this rabbit model. Such constructs may be valuable for repair of severe urethral diseases.
This item appears in the following Collection(s)
- Academic publications [246515]
- Faculty of Medical Sciences [93308]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.