Tissue-specific expression and in vivo regulation of zebrafish orthologues of mammalian genes related to symptomatic hypomagnesemia.
Fulltext:
128576.pdf
Embargo:
until further notice
Size:
389.6Kb
Format:
PDF
Description:
Publisher’s version
Publication year
2013Source
Pflügers Archiv : European Journal of Physiology, 465, 10, (2013), pp. 1409-21ISSN
Annotation
01 oktober 2013
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Physiology
Journal title
Pflügers Archiv : European Journal of Physiology
Volume
vol. 465
Issue
iss. 10
Page start
p. 1409
Page end
p. 21
Subject
NCMLS 5: Membrane transport and intracellular motility IGMD 9: Renal disorderAbstract
Introduction of zebrafish as a model for human diseases with symptomatic hypomagnesemia urges to identify the regulatory transport genes involved in zebrafish Mg(2+) physiology. In humans, mutations related to hypomagnesemia are located in the genes TRPM6 and CNNM2, encoding for a Mg(2+) channel and transporter, respectively; EGF (epidermal growth factor); SLC12A3, which encodes for the Na(+)-Cl(-) co-transporter NCC; KCNA1 and KCNJ10, encoding for the K(+) channels Kv1.1 and Kir4.1, respectively; and FXYD2, which encodes for the gamma-subunit of the Na(+),K(+)-ATPase. Orthologues of these genes were found in the zebrafish genome. For cnnm2, kcna1 and kcnj10, two conserved paralogues were retrieved. Except for fxyd2, kcna1b and kcnj10 duplicates, transcripts of orthologues were detected in ionoregulatory organs such as the gills, kidney and gut. Gene expression analyses in zebrafish acclimated to a Mg(2+)-deficient (0 mM Mg(2+)) or a Mg(2+)-enriched (2 mM Mg(2+)) water showed that branchial trpm6, gut cnnm2b and renal slc12a3 responded to ambient Mg(2+). When changing the Mg(2+) composition of the diet (the main source for Mg(2+) in fish) to a Mg(2+)-deficient (0.01 % (w/w) Mg) or a Mg(2+)-enriched diet (0.7 % (w/w) Mg), mRNA expression of branchial trpm6, gut trpm6 and cnnm2 duplicates, and renal trpm6, egf, cnnm2a and slc12a3 was the highest in fish fed the Mg(2+)-deficient diet. The gene regulation patterns were in line with compensatory mechanisms to cope with Mg(2+)-deficiency or surplus. Our findings suggest that trpm6, egf, cnnm2 paralogues and slc12a3 are involved in the in vivo regulation of Mg(2+) transport in ionoregulatory organs of the zebrafish model.
This item appears in the following Collection(s)
- Academic publications [245131]
- Electronic publications [132446]
- Faculty of Medical Sciences [93207]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.