Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity
Publication year
2013Source
Journal of Nuclear Medicine Technology, 41, 3, (2013), pp. 170-81ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Nuclear Medicine
Paediatrics - OUD tm 2017
Cardiology
Medical Oncology
Journal title
Journal of Nuclear Medicine Technology
Volume
vol. 41
Issue
iss. 3
Page start
p. 170
Page end
p. 81
Subject
IGMD 1: Functional imaging; NCEBP 14: Cardiovascular diseases; ONCOL 2: Age-related aspects of cancer; ONCOL 3: Translational research; ONCOL 3: Translational research N4i 1: Pathogenesis and modulation of inflammation; Medical Imaging - Radboud University Medical CenterAbstract
New antitumor agents have resulted in significant survival benefits for cancer patients. However, several agents may have serious cardiovascular side effects. Left ventricular ejection fraction measurement by (99m)Tc multigated radionuclide angiography is regarded as the gold standard to measure cardiotoxicity in adult patients. It identifies left ventricular dysfunction with high reproducibility and low interobserver variability. A decrease in left ventricular ejection fraction, however, is a relatively late manifestation of myocardial damage. Nuclear cardiologic techniques that visualize pathophysiologic processes at the tissue level could detect myocardial injury at an earlier stage. These techniques may give the opportunity for timely intervention to prevent further damage and could provide insights into the mechanisms and pathophysiology of cardiotoxicity caused by anticancer agents. This review provides an overview of past, current, and promising newly developed radiopharmaceuticals and describes the role and recent advances of scintigraphic techniques to measure cardiotoxicity. Both first-order functional imaging techniques (visualizing mechanical [pump] function), such as (99m)Tc multigated radionuclide angiography and (99m)Tc gated blood-pool SPECT, and third-order functional imaging techniques (visualizing pathophysiologic and neurophysiologic processes at the tissue level) are discussed. Third-order functional imaging techniques comprise (123)I-metaiodobenzylguanidine scintigraphy, which images the efferent sympathetic nervous innervations; sympathetic neuronal PET, with its wide range of tracers; (111)In-antimyosin, which is a specific marker for myocardial cell injury and necrosis; (99m)Tc-annexin V scintigraphy, which visualizes apoptosis and cell death; fatty-acid-use scintigraphy, which visualizes the storage of free fatty acids in the lipid pool of the cytosol (which can be impaired by cardiotoxic agents); and (111)In-trastuzumab imaging, to study trastuzumab targeting to the myocardium. To define the prognostic importance and clinical value of each of these functional imaging techniques, prospective clinical trials are warranted.
This item appears in the following Collection(s)
- Academic publications [246625]
- Faculty of Medical Sciences [93367]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.