Subcutaneous tissue response and osteogenic performance of calcium phosphate nanoparticle-enriched hydrogels in the tibial medullary cavity of guinea pigs
Publication year
2013Source
Acta Biomaterialia, 9, 3, (2013), pp. 5464-5474ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Dentistry
Journal title
Acta Biomaterialia
Volume
vol. 9
Issue
iss. 3
Page start
p. 5464
Page end
p. 5474
Subject
NCMLS 3: Tissue engineering and pathologyAbstract
In the current study, oligo(poly(ethylene glycol) fumarate) (OPF)-based hydrogels were tested for the first time as injectable bone substitute materials. The primary feature of the material design was the incorporation of calcium phosphate (CaP) nanoparticles within the polymeric matrix in order to compare the soft tissue response and bone-forming capacity of plain OPF hydrogels with CaP-enriched OPF hydrogel composites. To that end, pre-set scaffolds were implanted subcutaneously, whereas flowable polymeric precursor solutions were injected in a tibial ablation model in guinea pigs. After 8 weeks of implantation, histological and histomorphometrical evaluation of the subcutaneous scaffolds confirmed the biocompatibility of both types of hydrogels. Nevertheless, OPF hydrogels presented a loose structure, massive cellular infiltration and extensive material degradation compared to OPF-CaP hydrogels that were more compact. Microcomputed tomography and histological and histomorphometrical analyses showed comparable amounts of new trabecular bone in all tibias and some material remnants in the medial and distal regions. Particularly, highly calcified areas were observed in the distal region of OPF-CaP-treated tibias, which indicate a heterogeneous distribution of the mineral phase throughout the hydrogel matrix. This phenomenon can be attributed to either hindered gelation under highly perfused in vivo conditions or a faster degradation rate of the polymeric hydrogel matrix compared to the nanostructured mineral phase, resulting in loss of entrapment of the CaP nanoparticles and subsequent sedimentation.
This item appears in the following Collection(s)
- Academic publications [203935]
- Faculty of Medical Sciences [80403]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.