Are postural responses to backward and forward perturbations processed by different neural circuits?
Publication year
2013Author(s)
Number of pages
12 p.
Source
Neuroscience, 245, (2013), pp. 109-120ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Rehabilitation
Neurology
Journal title
Neuroscience
Volume
vol. 245
Languages used
English (eng)
Page start
p. 109
Page end
p. 120
Subject
DCN MP - Plasticity and memory; DCN MP - Plasticity and memory NCEBP 10: Human Movement & Fatigue; NCEBP 10: Human Movement & Fatigue DCN PAC - Perception action and controlAbstract
Startle pathways may contribute to rapid accomplishment of postural stability. Here we investigate the possible influence of a startling auditory stimulus (SAS) on postural responses. We formulated four specific questions: (1) can a concurrent SAS shorten the onset of automatic postural responses?; and if so (2) is this effect different for forward versus backward perturbations?; (3) does this effect depend on prior knowledge of the perturbation direction?; and (4) is this effect different for low- and high-magnitude perturbations? Balance was perturbed in 11 healthy participants by a movable platform that suddenly translated forward or backward. Each participant received 160 perturbations, 25% of which were combined with a SAS. We varied the direction and magnitude of the perturbations, as well as the prior knowledge of perturbation direction. Perturbation trials were interspersed with SAS-only trials. The SAS accelerated and strengthened postural responses with clear functional benefits (better balance control), but this was only true for responses that protected against falling backwards (i.e. in tibialis anterior and rectus femoris). These muscles also demonstrated the most common SAS-triggered responses without perturbation. Increasing the perturbation magnitude accelerated postural responses, but again with a larger acceleration for backward perturbations. We conclude that postural responses to backward and forward perturbations may be processed by different neural circuits, with influence of startle pathways on postural responses to backward perturbations. These findings give directions for future studies investigating whether deficits in startle pathways may explain the prominent backward instability seen in patients with Parkinson's disease and progressive supranuclear palsy.
This item appears in the following Collection(s)
- Academic publications [229074]
- Faculty of Medical Sciences [87745]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.