Some but not all dyadic measures in shared decision making research have satisfactory psychometric properties
Publication year
2012Source
Journal of Clinical Epidemiology, 65, 12, (2012), pp. 1310-1320 e3ISSN
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
IQ Healthcare
Journal title
Journal of Clinical Epidemiology
Volume
vol. 65
Issue
iss. 12
Page start
p. 1310
Page end
p. 1320 e3
Subject
NCEBP 3: Implementation ScienceAbstract
OBJECTIVE: To assess the psychometric properties of dyadic measures for shared decision making (SDM) research. STUDY DESIGN AND SETTING: We conducted an observational cross-sectional study in 17 primary care clinics with physician-patient dyads. We used seven subscales to measure six elements of SDM: (1) defining the problem, presenting options, and discussing pros and cons; (2) clarifying the patient's values and preferences; (3) discussing the patient's self-efficacy; (4) drawing on the doctor's knowledge; (5) verifying the patient's understanding; and (6) assessing the patient's uncertainty. We assessed the reliability and invariance of the factorial structure and considered a measure to be dyadic if the factorial structure of the patient version was similar to that of the physician version and if there was equality of loading (no significant chi-square). RESULTS: We analyzed data for 264 physicians and 269 patients. All measures except one showed adequate reliability (Cronbach alpha, 0.70-0.93) and factorial validity (root mean square error of approximation, 0.000-0.06). However, we found only four measures to be dyadic (P>0.05): the values clarification subscale, perceived behavioral subscale, information-verifying subscale, and uncertainty subscale. CONCLUSION: The subscales for values clarification, perceived behavioral control, information verifying, and uncertainty are appropriate dyadic measures for SDM research and can be used to derive dyadic indices.
This item appears in the following Collection(s)
- Academic publications [232166]
- Faculty of Medical Sciences [89076]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.