Publication year
2012Author(s)
Source
Nature Genetics, 44, 11, (2012), pp. 1249-54ISSN
Publication type
Article / Letter to editor
Display more detailsDisplay less details
Organization
Human Genetics
Journal title
Nature Genetics
Volume
vol. 44
Issue
iss. 11
Page start
p. 1249
Page end
p. 54
Subject
IGMD 3: Genomic disorders and inherited multi-system disordersAbstract
Elevated transforming growth factor (TGF)-beta signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-beta signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-beta in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-beta activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-beta signaling cascades and higher expression of TGF-beta-responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-beta signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.
This item appears in the following Collection(s)
- Academic publications [246515]
- Faculty of Medical Sciences [93308]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.