Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation.
Publication year
2012Source
Journal of the American College of Surgeons, 214, 4, (2012), pp. 648-55; discussion 656-7ISSN
Annotation
01 april 2012
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Surgery
Journal title
Journal of the American College of Surgeons
Volume
vol. 214
Issue
iss. 4
Page start
p. 648-55; discussion 656
Page end
p. 7
Subject
NCEBP 2: Evaluation of complex medical interventionsAbstract
BACKGROUND: Transfusion of stored blood is associated with increased complications. Microparticles (MPs) are small vesicles released from RBCs that can induce cellular dysfunction, but the role of RBC-derived MPs in resuscitation from hemorrhagic shock is unknown. In the current study, we examined the effects of RBC-derived MPs on the host response to hemorrhage and resuscitation. STUDY DESIGN: MPs were isolated from murine packed RBC units, quantified using flow cytometry, and injected into healthy mice. Separate groups of mice underwent hemorrhage and resuscitation with and without packed RBC-derived MPs. Lungs were harvested for histology and neutrophil accumulation and assessed by myeloperoxidase content. Human neutrophils were treated with human RBC-derived MPs and CD11b expression, superoxide production, and phagocytic activity were determined. RESULTS: Stored murine packed RBC units contained increased numbers of RBC-derived MPs compared with fresh units. Hemorrhaged mice resuscitated with MPs demonstrated substantially increased pulmonary neutrophil accumulation and altered lung histology compared with mice resuscitated without MPs. Intravenous injection of MPs into normal mice resulted in neutrophil priming, evidenced by increased neutrophil CD11b expression. Human neutrophils treated with RBC-derived MPs demonstrated increased CD11b expression, increased superoxide production, and enhanced phagocytic ability compared with untreated neutrophils. CONCLUSIONS: Stored packed RBC units contain increased numbers of RBC-derived MPs. These MPs appear to contribute to neutrophil priming and activation. The presence of MPs in stored units can be associated with adverse effects, including lung injury, after transfusion.
This item appears in the following Collection(s)
- Academic publications [229134]
- Faculty of Medical Sciences [87758]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.