Publication year
2012Source
British Journal of Pharmacology, 165, 7, (2012), pp. 2167-2177ISSN
Annotation
1 april 2012
Publication type
Article / Letter to editor

Display more detailsDisplay less details
Organization
Physiology
Journal title
British Journal of Pharmacology
Volume
vol. 165
Issue
iss. 7
Page start
p. 2167
Page end
p. 2177
Subject
NCMLS 5: Membrane transport and intracellular motility IGMD 9: Renal disorderAbstract
BACKGROUND AND PURPOSE: APETx2, a toxin from the sea anemone Anthropleura elegantissima, inhibits acid-sensing ion channel 3 (ASIC3)-containing homo- and heterotrimeric channels with IC(50) values < 100 nM and 0.1-2 microM respectively. ASIC3 channels mediate acute acid-induced and inflammatory pain response and APETx2 has been used as a selective pharmacological tool in animal studies. Toxins from sea anemones also modulate voltage-gated Na(+) channel (Na(v) ) function. Here we tested the effects of APETx2 on Na(v) function in sensory neurones. EXPERIMENTAL APPROACH: Effects of APETx2 on Na(v) function were studied in rat dorsal root ganglion (DRG) neurones by whole-cell patch clamp. KEY RESULTS: APETx2 inhibited the tetrodotoxin (TTX)-resistant Na(v) 1.8 currents of DRG neurones (IC(50) , 2.6 microM). TTX-sensitive currents were less inhibited. The inhibition of Na(v) 1.8 currents was due to a rightward shift in the voltage dependence of activation and a reduction of the maximal macroscopic conductance. The inhibition of Na(v) 1.8 currents by APETx2 was confirmed with cloned channels expressed in Xenopus oocytes. In current-clamp experiments in DRG neurones, the number of action potentials induced by injection of a current ramp was reduced by APETx2. CONCLUSIONS AND IMPLICATIONS: APETx2 inhibited Na(v) 1.8 channels, in addition to ASIC3 channels, at concentrations used in in vivo studies. The limited specificity of this toxin should be taken into account when using APETx2 as a pharmacological tool. Its dual action will be an advantage for the use of APETx2 or its derivatives as analgesic drugs.
This item appears in the following Collection(s)
- Academic publications [204107]
- Faculty of Medical Sciences [80531]
Upload full text
Use your RU credentials (u/z-number and password) to log in with SURFconext to upload a file for processing by the repository team.