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Abstract
In this paper, we describe emotion recognition experiments car
ried out for spontaneous affective speech with the aim to com
pare the added value of annotation of felt emotion versus an
notation of perceived emotion. Using speech material avail
able in the TNO-GAMING corpus (a corpus containing audio
visual recordings of people playing videogames), speech-based 
affect recognizers were developed that can predict Arousal and 
Valence scalar values. Two types of recognizers were devel
oped in parallel: one trained with felt emotion annotations 
(generated by the gamers themselves) and one trained with 
perceived/observed emotion annotations (generated by a group 
of observers). The experiments showed that, in speech, with 
the methods and features currently used, observed emotions 
are easier to predict than felt emotions. The results suggest 
that recognition performance strongly depends on how and by 
whom the emotion annotations are carried out.
Index Terms: emotion, emotional speech database, emotion 
recognition

1. Introduction
In emotion recognition research, ground truth labels to be used 
for the development of emotion recognizers, are difficult to ac
quire and are to a certain extent subjective. There is, in general, 
no discussion about who is speaking or what language he or she 
is speaking, but people do not always agree on the speaker’s 
emotional state. Hence, the labelling (annotation) of sponta
neous expressive corpora remains a major topic in emotion re
search. One could assume that the closest approximation of 
‘ground truth’ in emotion labelling is to ask the persons who 
have undergone the emotion to assign labels according to what 
they themselves felt. However, the majority of spontaneous 
emotion corpora contain emotion annotations that are generated 
by (naive) observers who can only label the perceived emotions. 
Only a small number of studies has investigated the use of an
notations that are made by the subject who has undergone the 
emotion him/herself for expressive corpora. Auberge et al. [1] 
proposed to use ‘auto-annotation’, annotation performed by the 
subject him/herself, as an alternative method to label expres
sive corpora. The subjects were asked to label what they felt 
rather than what they expressed. There were no conclusive 
results: they concluded that ‘felt’-annotations or ‘expressed’- 
annotations both have their strengths and weaknesses. In Busso 
and Narayanan [2], the expression and perception of emotions 
were studied and ‘self’-assessments of emotion were compared 
to assessments made by observers: the authors found a mis
match between felt and perceived emotions. The ‘self’-raters 
appeared to assign their own emotions to more specific emotion

categories which led to more extreme values in the Arousal- 
Valence space. In Truong et al. [3], we have also concluded that 
there are discrepancies between ‘self’ and perceived emotion 
assessments.

So far, we have not seen studies (to the best of our knowl
edge) that investigate whether these felt emotions, as labelled 
by the persons who have undergone these emotions themselves, 
can be predicted just as well as observed emotions. For some 
researchers, the ultimate goal is to develop a machine that can 
recognize one’s felt emotions. From an emotion recognition 
perspective, it is important to know how the emotion signals 
were labelled and by whom. Hence, we developed, in parallel, 
two speech-based affect recognizers that can predict Arousal 
and Valence scalar values: one that is trained to detect felt emo
tions, and one that is trained to detect perceived emotions. The 
aim of this paper is to compare these speech-based affect recog
nizers’ abilities to recognize felt or perceived emotion.

This paper is organized as follows. For the development 
of our recognizers, we used the TNO-GAMING corpus which 
is described in Section 2. We describe the method and speech 
features used to develop the recognizers in Section 3. The ex
perimental setup is explained in Section 4, and the results of the 
experiments are presented in Section 5. Finally, in Section 6 , 
we discuss the results and conclusions.

2. The T N O -G A M IN G  corpus
For the development of the Arousal and Valence predictors, we 
used speech data from the TNO-GAMING corpus.

2.1. Audiovisual recordings

The TNO-GAMING corpus (see also [4, 3, 5]) contains audio
visual recordings of expressive behavior of subjects (17m/11f) 
playing a video game (Unreal Tournament). Speech recordings 
were made with high quality close-talk microphones. The au
dio of the game itself was played through headphones. Record
ings of facial expressions were made with high quality webcams 
(Logitech Quickcam Sphere). In addition, the video stream of 
the game itself was also captured and stored at a rate of 1 frame 
per second. The participants played the video game twice in 
teams of 2  against 2 . Expressive vocal and facial behavior of 
the participants was stimulated by 1) asking the participants to 
bring a friend as teammate, 2) granting bonusses to the team 
with the highest score and ‘best’ collaboration, and 3) generat
ing suprising events during the game, e.g., sudden deaths, sud
den appearances of monsters, and hampering mouse and key
board controls.



2.2. Annotations performed by gamers themselves

One of the key characteristics of the TNO-GAMING corpus is 
that it is annotated by the gamers themselves. After each gam
ing session, the participants annoted their own emotions in two 
different ways by 1) choosing one of the twelve available emo
tion categories (Happiness, Boredom, Amusement, Surprise, 
Malicious Delight, Excitement, Fear, Anger, Relief, Frustration, 
Wonderment, and Disgust), and 2) giving Arousal and Valence 
ratings each 10 seconds (on scales ranging from —1 to 1). In 
our analyses, we only used the Arousal and Valence ratings. In 
this dimension-based continuous annotation procedure, the par
ticipants (who were offered the audiovisual recordings of the 
face and voice, and the video stream of the game) were asked 
to rate their own felt emotion on Arousal and Valence scales 
each 10 seconds; they could not pause or rewind the video. 
For this labelled data to be of use for the development of af
fect recognizers, we needed to post-process the data. Since the 
annotation was performed continuously by the participants in 
the dimension-based annotation, we needed to design a proce
dure that links the ratings given by the participants with certain 
spurts of speech (the ratings could have possibly been given 
at non-speech moments since the annotation was performed 
continuously). The post-processing procedure involved several 
steps: 1) detection and segmentation of the speech with a rel
atively simple energy-based silence detection algorithm (per
formed with Praat [6]), 2) manual word-level transcription of 
the speech (performed by the first author), and 3) synchroniza
tion of the speech segments obtained with the silence detection 
algorithm with the given Arousal and Valence ratings. This syn
chronization process was carried out as follows: for a maximum 
of N  segments (we chose N  =  5), check whether 1) the seg
ment starts within a margin of T  seconds (we chose T  =  3) 
from the moment that the subject was requested to give the emo
tion judgement, and 2 ) the segment is labelled as non-silence by 
the silence detection algorithm. These procedures resulted in a 
total of 7473 rated speech segments, comprising a total duration 
of 186.2 minutes (mean of 1.5 s and standard deviation of 1.12 s) 
and a number of 1963 unique words. We refer to the annotations 
performed by the gamers themselves as SELF-annotations (and 
the gamers annotating their own emotions as SELF-raters).

2.3. Annotations performed by observers

A part of the corpus was also annotated by 6 (naive) observers 
who had not participated in the data collection procedure or the 
experiment described in [3]. From the total of 7473 speech 
segments, 2400 segments were selected (sampling the whole 
Arousal-Valence space of the SELF-annotations evenly) for re
annotation by the 6 naive observers (average age of 25.4 years). 
The 2400 segments have a total duration of 76 minutes (mean 
and standard deviation of 1.9 s and 1.2 s respectively).

The observers were asked to rate each audiovisual (pre
segmented) segment on the Arousal and Valence scale. Note 
that there are some differences with the SELF-annotation pro
cedure: 1) the audiovisual segments are already segmented for 
the observers, 2) the observers can re-play the segment, and 3) 
the captured video stream of the game was not offered to the 
observers. To ensure that each segment was annotated by 3 dif
ferent observers (in order to obtain more ‘robust’ emotion judg
ments), each observer annotated different overlapping parts of 
the data set. The data set of 2400 segments was divided into 
four parts, each part consisting of 624 segment. Each observer 
was assigned to two parts of this data set, and thus each ob
server annotated a total of 1248 segments. Of the 624 segments

in each part, 24 segments occured twice and were used to as
sess the rating consistency of the observer (intra-rater reliabil
ity). For each observer, it took approximately 4 to 5 hours to 
complete the annotation of 1248 segments, including breaks. 
The annotations performed by these observers are referred to 
as OTHER.3-annotations, and the observers are referred to as 
OTHER.3-raters: ‘3’ because each segment was rated by 3 dif
ferent observers.

2.4. Speech material used in experiments

To recapitulate: 2400 segments were annotated by the gamers 
themselves and by observers, and hence, we can use two types 
of references: one that is based on SELF-ratings and one that is 
based on OTHER.3-ratings. The OTHER.3-ratings (a 3 by 2400 
matrix) represent the 3 different (Arousal and Valence) ratings 
that each of the 2400 segment has (due to three different ob
servers). In order to obtain a reference annotation of observers 
(1 Arousal and Valence rating per segment, a 1 by 2400 matrix), 
we averaged the 3 different ratings. These ratings are referred 
to as the OTHER. AVG-ratings and can be used, in parallel with 
the SELF-ratings, as reference for the development of affect rec
ognizers.

The distribution of the two different types of refer
ences, SELF-ratings and OTHER. AVG-ratings are plotted in 2D- 
Histograms and shown in Fig. 1 and Fig. 2. These plots show 
that the observers judged the observed emotions much less 
extreme than the SELF-raters do: the OTHER. AVG-ratings are 
mostly located in the Neutral area. However, the pull towards 
Neutrality is also caused by the averaging process.

2.5. Analysis of felt and perceived emotion annotations

How consistent are the raters in their emotion annotations? Due 
to practical limitations, we were not able to assess the consis
tency of the SELF-raters, but for the 6 observers, we were able 
to assess their intra-rater consistencies. For the agreement com
putations, we used Krippendorff’s a  ([7]) and Pearson’s p. For 
the computation of a  (ordinal), all ratings were discretized into
5 classes (with boundaries at —0.6, —0.2, 0.2, and 0.6); we 
refer to this a  as a ord,5). The observers obtained an averaged 
a ord,5 intra-reliability of 0.80 and 0.48, on a scale from -1 to
1, for Valence and Arousal respectively. It seems that the ob
servers were more consistent in their Valence judgements than 
in their Arousal judgements. In Table 1, the agreement figures

Table 1: Agreement between SELF-ratings ( ‘felt') and 
OTHER. AVG-ratings ( ‘perceived').

«ord,5 Pearson’s p
Arousal
Valence

0.27 0.33 
0.36 0.41

between the SELF-ratings (‘felt’) and OTHER. AVG-ratings (‘per
ceived’) are presented. These relatively low agreement figures 
indicate and confirm that there are discrepancies between felt 
and perceived emotion (see also [3, 2]), which are also visible 
in Fig. 1 and Fig. 2.

3. Method and Features
The method and features used to develop the speech-based af
fect recognizers are described here.



valence

Figure 1: 2D Histogram: the distribution o f the 2400 selected 
speech segments in the Arousal-Valence space, based on the 
SELF -ratings.

valence

Figure 2: 2D Histogram: the distribution o f the 2400 selected 
speech segments in the Arousal-Valence space, based on the 
OTHER. AVG-ratings.

3.1. Support Vector Regression

Since our goal is to predict scalar values rather than discrete 
classes, we used a learning algorithm based on regression. We 
used Support Vector Regression (SVR, see [8]) to train regres
sion models that can predict Arousal and Valence scalar val
ues on a continuous scale. Similar to Support Vector Machines 
([9]), SVR is a kernel-based method and allows the use of the 
kernel trick to transform the original feature space to a higher
dimensional feature space through a (non-linear) kernel func
tion. We used e-SVR available in libsvm ([10]) to train our 
models. In SVR, a margin e is introduced and SVR tries to con
struct a discriminative hyperplane that has at most e deviation 
from the original training samples. In our emotion prediction 
experiments, the RBF kernel function was used, and the param
eters c (cost), e (the e of the loss function), and y were tuned 
on a development set. The parameters were tuned via a simple 
grid search procedure that evaluates all possible combinations 
of c (with exponentially growing values between 2 - 4  and 24), 
e (with exponentially growing values between 10- 3  and 100), 
and y (with exponentially growing values between 2 ~ 10 and 
22).

3.2. Speech features

The acoustic feature extraction was performed with Praat ([6]). 
First, a voiced-unvoiced detection algorithm (available in Praat) 
was applied to find the voiced units. The features were extracted 
over each voiced unit of a segment. We made a selection of 
features based on previous studies (e.g., [12, 11]), and grouped 
these into features related to pitch information, energy/intensity 
information, and information about the distribution o f energy 
in the spectrum. The spectral features MFCCs as commonly 
used in automatic speech recognition were also included. And 
finally, global information calculated over the whole segment 
(instead of per voiced unit) about the speech rate and the inten
sity and pitch contour was included. An overview of the features 
used is given in Table 2.

The majority of our acoustic features were measured per 
voiced unit. Subsequently, the features extracted on voiced- 
unit-level were aggregated to segment-level by taking the mean, 
minimum, and maximum of the features over the voiced 
units. Hence, we obtained per segment a feature vector with 
(3 x (4 +  4 +  5 +  24)) +  6 =  117 dimensions. These fea
tures were normalized by transforming the features to z-scores:

Table 2: Acoustic features used for emotion prediction with 
SVR.

Features (with the number of features used in brackets)
Pitch-related mean, standard deviation, range (max-
(JV =  4) min), mean absolute pitch slope
Intensity-related
(N  =  4)

Root-Mean-Square (RMS), mean, 
range (max-min), standard deviation

Distribution-
energy-in
spectrum-related
(N  =  5)

slope Long-Term Averaged Spectrum 
(LTAS), Hammarberg index, standard 
deviation, centre of gravity (cog), 
skewness

MFCCs (N  = 12 MFCC coefficients, 12 deltas (first
24) order derivatives)
other (N  =  6 ) speech ratel, speech rate2 , mean pos

itive slope pitch, mean negative slope 
pitch, mean positive slope intensity, 
mean negative slope intensity

z  =  (x — p ) /a ,  with p  and a  calculated over a development 
set.

4. Experiments
Two speech-based affect recognizers were trained and tested in 
parallel: one that is trained to detect felt emotion and one that is 
trained to detect perceived emotion. In this Section, we describe 
the experimental setup and the evaluation metrics used.

4.1. Experimental setup

The automatic emotion prediction experiments (we use the term 
‘prediction’ to emphasize the fact that we are predicting scalar 
values rather than discrete categories) were carried out speaker- 
independently, and separately for female and male speakers. We 
performed N-fold cross-validation, where in each fold, one spe
cific speaker was held out for testing. The dataset of 2400 seg
ments (1048f/1352m) was divided into training, development 
and test sets, where the training and test sets are disjoint. The 
splits in training/development/test are roughly 80%/10%/10% 
and 87%/8%/5% for female and male speakers respectively. 
The test set consists of speech segments from a specific speaker 
that is excluded from the training and development set. The



development set is comprised of randomly picked segments, 
drawn from the remaining segments after the test speaker has 
been filtered out.

The development set is used for parameter tuning and fea
ture normalization (see Section 3). In parameter tuning, the pa
rameter set that achieves the lowest error rate (eavg, see Sec
tion 4.2), averaged over N  folds, is selected to use in the final 
testing.

We performed two types of prediction experiments. One is 
based on the SELF-annotations, and the other one is based on 
the OTHER.AVG-annotations. With these two experiments, we 
investigate whether ‘felt’ or ‘observed/perceived’ emotions can 
be best predicted automatically.

4.2. Evaluation metrics

Because there are various evaluation metrics applicable to this 
emotion prediction task, we report several evaluation metrics. 
Firstly, we use a relatively simple evaluation metric that mea
sures the absolute difference between the predicted output and 
the reference input (also used in [13]): a  =  |xpred — x jef|. 
We report the eavg which is obtained by averaging over N  seg
ments: eavg =  Si. The lower eavg, the better the perfor
mance. Secondly, as human-machine agreement measure, we 
report Krippendorff’s a ord,5 to allow comparison with human 
performance. Finally, Pearson’s p is reported.

5. Results
The results of the Arousal and Valence prediction experiments 
are presented in Table 3. Some interesting observations can 
be made on the basis of these results. Firstly, we can observe 
that the performance obtained with the SELF-annotations as ref
erence is much lower than when OTHER.AVG-annotations are 
used. This suggests that it is easier to predict perceived affect 
than felt affect.

Table 3: Results o f Arousal (=A) and Valence =V) prediction 
experiments. The baseline results are obtained with a predictor 
that always predicts Neutrality.

Reference Test SVR prediction
6 avg  C^ord ,5 P

Baseline
6 avg  C^ord ,5

A S E L F

O T H E R . A VG

0.41 0.22 0.25 
0.21 0.42 0.55

0.45 -0.07 
0.31 -0.18

V S E L F

O T H E R . A VG

0.36 0.10 0.18 
0.26 0.28 0.41

0.36 -0.01 
0.28 0.00

Secondly, Arousal can be much better predicted than Va
lence. Thirdly, although the predictors perform better than the 
baseline (a predictor that always predicts Neutrality), the rela
tively low agreement and correlation measures between the ma
chine’s predictions and the human judgements indictate that the 
performance in general seems to be rather moderate from a clas
sification perspective.

6. Discussion and Conclusions
To summarize, the results of the experiments indicate that felt 
emotions are hard to predict using current recognition technol
ogy. It suggests that currently, we can only recognize expressed 
emotions that are perceivable by observers. The OTHER.AVG- 
annotations were obtained in a slightly different way than the

SELF-annotations (due to practical limitations); these differ
ences (see Section 2.3) may have resulted in slightly noisier 
SELF-annotations which possibly negatively affected prediction 
performance. Here we can remark that the SELF-annotations 
are by design all made by different annotators, and hence, we 
are doing “annotator-independent” prediction, whereas in the 
OTHER. AVG condition, the annotators are drawn from the same 
pool in training and testing. Furthermore, in general, the acous
tic Arousal and Valence predictors appear to perform rather 
moderately from a classifier’s perspective (although it should 
be noted that we did not optimize performance by e.g., feature 
selection). In future research, we will investigate more closely 
the relation between human and machine performance, and the 
relation between the quality of annotation and machine perfor
mance. In addition, the audiovisual recordings can be investi
gated for a multimodal analysis of affect, i.e., combining facial 
and vocal expressive behavior.
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