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Disentangling polygenic associations
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Aysu Okbay 9,10, Benjamin M. Neale11,12,13, Stephen V. Faraone14, iPSYCH-Broad-PGC ADHD Consortium,
Evie Stergiakouli1516, George Davey Smith 15,17, Simon E. Fisher 1,18, Anders D. Børglum3,4,5 and
Beate St Pourcain 1,15,18

Abstract
Interpreting polygenic overlap between ADHD and both literacy-related and language-related impairments is
challenging as genetic associations might be influenced by indirectly shared genetic factors. Here, we investigate
genetic overlap between polygenic ADHD risk and multiple literacy-related and/or language-related abilities (LRAs), as
assessed in UK children (N ≤ 5919), accounting for genetically predictable educational attainment (EA). Genome-wide
summary statistics on clinical ADHD and years of schooling were obtained from large consortia (N ≤ 326,041). Our
findings show that ADHD-polygenic scores (ADHD-PGS) were inversely associated with LRAs in ALSPAC, most
consistently with reading-related abilities, and explained ≤1.6% phenotypic variation. These polygenic links were then
dissected into both ADHD effects shared with and independent of EA, using multivariable regressions (MVR).
Conditional on EA, polygenic ADHD risk remained associated with multiple reading and/or spelling abilities, phonemic
awareness and verbal intelligence, but not listening comprehension and non-word repetition. Using conservative
ADHD-instruments (P-threshold < 5 × 10−8), this corresponded, for example, to a 0.35 SD decrease in pooled reading
performance per log-odds in ADHD-liability (P= 9.2 × 10−5). Using subthreshold ADHD-instruments (P-threshold <
0.0015), these effects became smaller, with a 0.03 SD decrease per log-odds in ADHD risk (P= 1.4 × 10−6), although the
predictive accuracy increased. However, polygenic ADHD-effects shared with EA were of equal strength and at least
equal magnitude compared to those independent of EA, for all LRAs studied, and detectable using subthreshold
instruments. Thus, ADHD-related polygenic links with LRAs are to a large extent due to shared genetic effects with EA,
although there is evidence for an ADHD-specific association profile, independent of EA, that primarily involves literacy-
related impairments.

Introduction
Children with Attention-Deficit/Hyperactivity Disorder

(ADHD) often experience difficulties mastering literacy-
related and/or language-related abilities (LRAs)1–3. It has
been estimated that up to 40% of children diagnosed with
clinical ADHD also suffer from reading disability (RD,
also known as developmental dyslexia) and vice versa4.
The spectrum of affected LRAs in ADHD may, however,
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also include writing5,6, spelling7,8, syntactic9,10 and pho-
nological9,10 abilities. Both clinical ADHD and RD are
complex childhood-onset neurodevelopmental conditions
that affect about 5% and 7% of the general population,
respectively11,12. ADHD is characterised by hyperactive,
inattentive and impulsive symptoms13, whereas decoding
and/or reading comprehension deficits are prominent in
individuals with RD14.
To interpret the comorbidity of ADHD and RD, a

multiple-deficit model including shared underlying
aetiologies has been proposed, involving both genetic and
environmental influences15. This model is supported by
twin studies suggesting that the co-occurrence of ADHD
symptoms and reading deficits is, to a large extent, attri-
butable to shared genetic influences16–18. Further twin
research suggests that the genetic covariance between
reading difficulties and ADHD is largely independent of
genetic factors shared with IQ19, although it is not known
whether these findings extend to a wider spectrum of
LRAs, beyond reading abilities. Furthermore, the inter-
pretation of polygenic ADHD-LRA overlap using markers
on genotyping arrays is more challenging. There is strong
evidence that genetically predicted educational attain-
ment (EA)20 shares genetic variability with both ADHD21

and reading abilities22,23. Genetically predicted EA is a
genetic proxy of cognitive abilities, but also socio-
economic status20 including, for example, associations
with maternal smoking during pregnancy, parental
smoking, household income or watching television24.
Thus, observed genetic associations between ADHD and
reading abilities may solely reflect shared genetic variation
with EA, but not any other, more specific neuro-cognitive
mechanisms. In other words, polygenic associations might
be inflated or even induced25 by genetically predictable
traits that are related to both, ADHD and reading abilities
(or other LRAs).
Here, we (a) study polygenic links between clinical

ADHD and a wide range of population-ascertained lit-
eracy-related and language-related measures as captured
by common variation, (b) evaluate to what extent such
links reflect a shared genetic basis with EA and (c) assess
whether there is support for shared genetic factors
between clinical ADHD and LRAs conditional on
genetically predicted EA.
Studied ADHD polygenic scores (ADHD-PGS) are

based on ADHD genome-wide association study (GWAS)
summary statistics from two large independent ADHD
samples, the Psychiatric Genomics Consortium (PGC)
and the Danish Lundbeck Foundation Initiative for Inte-
grative Psychiatric Research (iPSYCH), and a combination
thereof. Associations between ADHD-PGS and a wide
spectrum of population-based literacy-related and
language-related measures related to reading, spelling,
phonemic awareness, listening comprehension, non-word

repetition and verbal intelligence skills, are examined in a
sample of children from the UK Avon Longitudinal Study
of Parents and Children (ALSPAC). Applying multi-
variable regression (MVR) techniques, analogous to
Mendelian Randomisation (MR) approaches26, we report
here disentangled associations between polygenic ADHD
risk and LRA measures and estimate effects independent
of and shared with genetically predicted years of school-
ing, using summary statistics from the Social Science
Genetic Association Consortium (SSGAC).

Methods and materials
Literacy-related and language-related abilities in the
general population
LRAs were assessed in children and adolescents from

ALSPAC, a UK population-based longitudinal pregnancy-
ascertained birth cohort (estimated birth date: 1991–1992,
Supplementary Information)27,28. Ethical approval was
obtained from the ALSPAC Law-and-Ethics Committee
(IRB00003312) and the Local Research-Ethics Commit-
tees. Written informed consent was obtained from a
parent or individual with parental responsibility and
assent (and for older children consent) was obtained from
the child participants.

Phenotype information
Thirteen measures capturing LRAs related to reading,

spelling, phonemic awareness, listening comprehension,
non-word repetition and verbal intelligence scores were
assessed in 7 to 13 year-old ALSPAC participants (N ≤
5919, Table 1) using both standardised and ALSPAC-
specific instruments. Detailed descriptions of all LRA
measures are available in Table 1 and the Supplementary
Information.
All LRA scores were rank-transformed to allow for

comparisons of genetic effects across different psycholo-
gical instruments with different distributions (Supple-
mentary Information). Phenotypic correlations, using
Pearson-correlation coefficients, were comparable for
untransformed and rank-transformed scores (Table S1).
To account for multiple testing, we estimated the effective
number of phenotypes studied using Matrix Spectral
Decomposition29(MatSpD), revealing seven independent
measures (experiment-wide error rate of 0.007).
For sensitivity analysis, we excluded 188 children with

an ADHD diagnosis at age 7, based on the Development
and Wellbeing Assessment (DAWBA)30 (Supplementary
Information).

Genetic analyses
ALSPAC participants were genotyped using the Illu-

mina HumanHap550 quad chip genotyping platforms,
and genotypes were called using the Illumina GenomeS-
tudio software. Genotyping, imputation and genome-wide
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association analysis details are described in the Supple-
mentary Information and Table 2.

Clinical ADHD summary statistics
Psychiatric Genomics Consortium (PGC). GWAS sum-

mary statistics were obtained from a mega-analysis of
clinical ADHD31, conducted by the PGC (4163 cases and
12,040 controls/pseudo-controls) (Table 2, Supplemen-
tary Information, www.med.unc.edu/pgc/).
The Lundbeck Foundation Initiative for Integrative

Psychiatric Research (iPSYCH). An independent set of
ADHD GWAS summary statistics were accessed through

the Danish iPSYCH project32 (14,584 ADHD cases, 22,492
controls) (Table 2, Supplementary Information), using
samples from the Danish Neonatal Screening Biobank
hosted by Statens Serum Institute21,33.
Combined PGC and iPSYCH ADHD sample (PGC+

iPSYCH). To maximise power, we also analysed meta-
GWAS summary statistics from an ADHD sample con-
taining both PGC and iPSYCH participants21 (20,183
cases, 35,191 controls/pseudo-controls) (Table 2, www.
med.unc.edu/pgc/) and its European-only subset (PGC+
iPSYCH(EUR), 19,099 cases, 34,194 controls/pseudo-
controls) (Table 2, www.med.unc.edu/pgc/).

Table 1 Literacy-related and language-related abilities in the Avon Longitudinal Study of Parents and Children

LRA (psychological instrument) Mean Score (SE) Mean Age (SE) N (%males) LRA combinations

Reading accuracy and comprehension (WORD69), words 28.44 (9.24) 7.53 (0.31) 5891 (50.6)
-------------R

eading------------

-----------------------G
lobal

L
R
A
s----------------------

Reading accuracy (ALSPAC specific: NBO70), words 7.55 (2.44) 9.87 (0.32) 5738 (49.3)

Reading speeda (NARA II71), passages 105.50 (12.47) 9.88 (0.32) 5189 (49.1)

Reading accuracya (NARA II71), passages 104.11 (13.62) 9.88 (0.32) 5201 (49.1)

Reading speed (TOWRE72), words 82.58 (10.28) 13.83 (0.20) 4247 (48.4)

Non-word reading accuracy (ALSPAC specific: NBO70) 5.24 (2.48) 9.87 (0.32) 5731 (49.2)

Non-word reading speed (TOWRE72) 50.82 (9.38) 13.83 (0.20) 4237 (48.3)

Spelling accuracy (ALSPAC specific: NB) 7.89 (4.39) 7.53 (0.31) 5800 (50.2)

-Spelling-Spelling accuracy (ALSPAC specific: NB) 10.27 (3.43) 9.87 (0.32) 5728 (49.2)

Phonemic awareness (AAT73) 20.23 (9.51) 7.53 (0.31) 5919 (50.6)

Listening comprehension (WOLD74) 7.50 (1.96) 8.63 (0.30) 5473 (49.9)

Non-word repetition (CNRep75) 7.26 (2.51) 8.63 (0.30) 5464 (49.9)

Verbal intelligencea (WISC-III76) 107.85 (16.74) 8.64 (0.31) 5456 (49.7)

Note: Thirteen LRAs capturing aspects related to reading, spelling, phonemic awareness, listening comprehension, non-word repetition and verbal intelligence were
assessed in 7 to 13 year-old ALSPAC participants using both standardised and ALSPAC-specific instruments (Supplementary Information)
LRAs literacy-related and language-related abilities, WORD Wechsler Objective Reading Dimension, ALSPAC Avon Longitudinal study of Parents and Children, NBO
ALSPAC-specific assessment developed by Nunes, Bryant and Olson, NARA II The Neale Analysis of Reading Ability-Second Revised British Edition, TOWRE Test Of Word
Reading Efficiency, NB ALSPAC-specific assessment developed by Nunes and Bryant, AAT Auditory Analysis Test, WOLD Wechsler Objective Language Dimensions,
CNRep Children’s Test of Nonword Repetition, WISC-III Wechsler Intelligence Scale for Children III
aScores were derived using age norms and adjusted for sex and principal components only before transformation

Table 2 Sample description

Phenotype Sample Source Ethnicity Imputation reference panel N

LRAs ALSPAC General population White European HRC r1.1 ≤5891

ADHD PGC Clinical sample Predominantly white European HapMap phase 3 16,203 (Ncases= 4163)

ADHD iPSYCH Clinical sample White European 1000 Genomes phase 3 37,076 (Ncases= 14,584)

ADHD PGC+ iPSYCH (EUR) Clinical sample White European 1000 Genomes phase 3 53,293 (Ncases= 19,099)

ADHD PGC+ iPSYCH Clinical sample Predominantly white European 1000 Genomes phase 3 55,374 (Ncases= 20,183)

EA SSGAC Predominantly general population White European 1000 Genomes phase 3a 326,041

aPredominantly 1000 Genomes phase 3 (20)
Abbreviations: LRAs literacy-related and language-related abilities, ADHD Attention-Deficit/Hyperactivity Disorder, EA educational attainment, ALSPAC Avon
Longitudinal study of Parents and Children, PGC Psychiatric Genomics Consortium, iPSYCH The Lundbeck Foundation Initiative for Integrative Psychiatric Research,
EUR European ancestry, SSGAC Social Science Genetic Consortium, HRC The Haplotype Reference Consortium
Note: There is no overlap between LRA, ADHD and EA samples
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Detailed sample descriptions are available in Table 2
and the Supplementary Information.

Educational attainment summary statistics
GWAS summary statistics for EA20 (discovery and

replication sample combined, excluding ALSPAC and
23andMe samples, N= 326,041) were obtained from the
SSGAC consortium. EA was assessed as years of school-
ing20. A detailed sample description is available in Table 2
and the Supplementary Information.

Genome-wide complex trait analysis
SNP-h2 and genetic correlations (rg) between LRAs

were estimated using Restricted Maximum Likelihood
(REML) analyses34,35 as implemented in Genome-wide
Complex Trait Analysis (GCTA) software36, including
individuals with a genetic relationship < 0.0534. For this
study, we selected only LRAs with evidence for SNP-h2

and sample size N > 4000 (Table S2).

Linkage disequilibrium score regression and correlation
Linkage Disequilibrium Score (LDSC) regression37 was

used to distinguish confounding biases from polygenic
influences by examining the LDSC regression intercept.
Unconstrained LD-score correlation38 analysis was
applied to estimate rg (Supplementary Information).

Polygenic scoring analyses
ADHD-PGS39,40 were created in ALSPAC using the

independent PGC and iPSYCH GWAS summary statistics,
and, to maximise power, also for GWAS summary statis-
tics from the combined PGC+ iPSYCH sample (Supple-
mentary Information). ADHD-PGS have been previously
linked to ADHD symptoms in ALSPAC participants41.
Rank-transformed LRAs were regressed on Z-standardised
ADHD-PGS (aligned to measure risk-increasing alleles)
using ordinary least square (OLS) regression (R:stats
library, Rv3.2.0). The proportion of phenotypic variance
explained is reported as OLS-regression-R2. Beta-
coefficients (β) for ADHD-PGS quantify here the change
in standard deviation (SD) units of LRA performance per
one SD increase in ADHD-PGS.

Multivariable regression analysis
To study the genetic association between ADHD and

LRAs conditional on genetic influences shared with EA,
we applied MVR. This technique is analogous to MR
methodologies26 and controls for collider bias42 through
the use of GWAS summary statistics. Technically, it
involves the regression of regression estimates from
independent samples on each other26 (Supplementary
Information). Within this study we use MVR without
inferring causality due to violations of classical MR
assumptions26 (see below).

Genetic variant selection: To disentangle ADHD-LRA
associations, we selected two sets of instruments from the
most powerful ADHD GWAS summary statistics (PGC+
iPSYCH). The first set contained genome-wide significant
variants (P < 5 × 10−8, conservative). The second set
included variants passing a more lenient P-value thresh-
old (P < 0.0015, subthreshold) to increase power, con-
sistent with current guidelines for the selection of genetic
instruments in MR (F-statistic < 10)43. All sets included
independent (PLINK44 clumping: LD-r2 < 0.25, ± 500 kb),
well imputed (INFO45 > 0.8) and common (EAF > 0.01)
variants. This resulted in 15 conservative and 2689 <
NSNPs ≤ 2692 subthreshold ADHD-instruments (Table
S8).
Estimation of ADHD effects: We extracted regression

estimates for selected ADHD-instruments (conservative
and subthreshold) from ADHD (PGC+ iPSYCH), EA
(SSGAC) and 13 LRA (ALSPAC) GWAS summary sta-
tistics. Analysing each set of variants independently,
regression estimates for individual LRA measures (β) were
regressed on both ADHD (β as lnOR) and EA regression
estimates (β) using an OLS regression framework (R:stats
library, Rv3.2.0). Outcomes were (1) a MVR regression
estimate quantifying the change in SD units of LRA per-
formance per log odds increase in ADHD risk conditional
on years of schooling (ADHD effect independent of EA),
and (2) a MVR regression estimate quantifying the change
in SD units of LRA performance per year of schooling as
captured by ADHD instruments (ADHD effect shared
with EA). Latter MVR regression estimates capture here
shared genetic effects between ADHD, EA and LRAs,
including (1) genetic confounding (i.e., genetically pre-
dictable EA influences both ADHD and LRAs), (2) med-
iation (i.e., genetically predictable ADHD influences LRA
indirectly through EA) and (3) biological pleiotropy (i.e.,
ADHD risk variants affect ADHD and EA through inde-
pendent biological pathways). As ADHD risk and EA are
inversely genetically related with each other21, they were
reported to quantify change per missing year of schooling.
To compare the magnitude of both MVR estimates, we
also conducted analyses using fully standardised EA,
ADHD and LRA regression estimates (Supplementary
Information).
Finally, MVR regression estimates were meta-analysed

and contrasted across reading-related, spelling-related
and all LRA measures (excluding the composite measure
verbal intelligence) (Table 1) using random-effects meta-
regression, accounting for phenotypic correlations
between LRAs (R:metafor library46, Rv3.2.0; Supplemen-
tary Information).

Sensitivity analyses
As the directionality of the relationship between ADHD,

EA and LRAs cannot be inferred in this study, we also

Verhoef et al. Translational Psychiatry (2019)9:35 Page 4 of 12



examined the genetic association between EA and LRAs,
conditional on ADHD, using MVR. Two sets of EA
instruments (conservative and subthreshold, Table S8)
were selected from EA (SSGAC) GWAS summary sta-
tistics, analogous to the selection of ADHD instruments,
and MVR was conducted as described above. Note that
we did not create LRA instrument sets, as GWAS sum-
mary statistics of LRAs were underpowered.

Attrition analysis
We carried out an attrition analysis in ALSPAC

studying the genetic association between LRA-
missingness and polygenic ADHD risk, using both poly-
genic scoring analyses and MVR (Supplementary
Information).

Results
Genetic architecture of literacy-related and language-
related abilities and clinical ADHD
Phenotypic variation in literacy-related and language-

related measures (Table 1), including reading abilities
(comprehension, accuracy and speed) assessed in words/
passages and non-words, spelling abilities (accuracy),
phonemic awareness, listening comprehension, non-word
repetition and verbal intelligence scores, can be tagged by
common variants, with SNP-h2 estimates between 0.32
(SE= 0.07, non-word repetition age 8) and 0.54 (SE=
0.07, verbal intelligence age 8) (Table S2; GCTA-based
and LDSC-based estimations). Importantly, all LRAs are
phenotypically (Table S1) and genetically (Table S3)
moderately to strongly interrelated. The observed LDSC-
based evidence for genetic liability of clinical ADHD
within the PGC (LDSC-h2= 0.08(SE= 0.03)), iPSYCH
(LDSC-h2= 0.26(SE= 0.02)) and PGC+ iPSYCH sam-
ples (Table S4) is consistent with previous reports21.

Association between ADHD polygenic risk scores and
literacy-realted and language-related abilities
We observed robust evidence for an inverse genetic

association between ADHD-PGS and reading accuracy/
comprehension age 7 (PGC: OLS-R²= 0.1%, P= 4.6 × 10-
3; iPSYCH: OLS-R²= 1.0%, P < 1 × 10−10), reading accu-
racy age 9 (PGC: OLS-R²= 0.1%, P= 5.7 × 10−3; iPSYCH:
OLS-R²= 1.2%, P < 1 × 10−10), and spelling accuracy age 9
(PGC: OLS-R²= 0.2%, P= 1.5 × 10−3; iPSYCH: OLS-R²
= 0.8%, P < 1 × 10−10) using independent ADHD dis-
covery samples (Fig. 1, Table S5). The strongest evidence
for association was observed when ADHD discovery
samples were combined (PGC+ iPSYCH; Fig. 1), includ-
ing those of European ancestry only (PGC+ iPSYCH
(EUR)), with genetic trait-disorder overlap present for all
LRAs studied (Table S5). For example, ADHD-PGS
explain 1.49% phenotypic variation in reading accuracy
age 9, translating into a genetic covariance of −0.11(95%-

CI: −0.14; −0.09) (Supplementary Information). Poly-
genic scoring results are presented for a P-value threshold
of 0.1, but other thresholds provided similar results (data
not shown). Results were not affected by the exclusion of
children with an ADHD diagnosis in ALSPAC (Table S6).

Shared genetic liability between ADHD and LRA with EA
There was strong evidence for a moderate negative

genetic correlation (rg= –0.53(SE= 0.03), P < 1 × 10−10)
between genetically predicted ADHD, as captured by the
largest ADHD discovery sample (PGC+ iPSYCH), and
EA (LDSC-h2= 0.11(SE= 0.004)), consistent with pre-
vious findings21. Likewise, LRAs were moderately to
highly positively correlated with EA (e.g., reading speed
age 13 rg= 0.80(SE= 0.22), P= 3.0 × 10−4; Table S7), as
previously reported22,23. Additionally, two independent
variants reached genome-wide significance for both
ADHD21 and EA20, consistent with biological pleiotropy
(i.e., single genetic loci influencing multiple traits)47.
These findings indicate complex, potentially reciprocal
cross-trait relationships (Fig. 2a) and violate MR causal
modelling assumptions26. Consequently, ADHD instru-
ments are not valid MR instruments as they are not
independent of EA.

Multivariable regression analyses
To disentangle the genetic overlap of polygenic ADHD

risk with literacy-related and language-related measures
into ADHD genetic effects independent of and shared
with EA, we applied MVR26 using ADHD instruments
based on the most powerful ADHD discovery sample
(PGC+ iPSYCH) (Fig. 2b).
Using conservative ADHD instruments (Table S8), non-

word reading accuracy at age 9 and pooled reading-
related abilities were associated with polygenic ADHD
risk, conditional on EA (Table 3). The latter translates
into, for example, a decrease of 0.35 SD in pooled reading
performance per log-odds increase in ADHD risk (βADHD

= -0.35(SE= 0.09), P= 9.2 × 10-5, Phet= 0.19), an effect
that was considerably stronger than for other LRAs (Pmod

= 0.011, Table S10).
Using subthreshold ADHD instruments (Table S8),

polygenic ADHD effects on LRA performance, condi-
tional on EA, were detectable for all reading-related and
spelling-related measures, phonemic awareness and ver-
bal intelligence, but not other LRAs such as listening
comprehension and non-word repetition (Table 3). Evi-
dence was strongest for pooled reading and spelling
abilities (Table 3, minimum P= 1.1 × 10−8). However,
observable effects were smaller in magnitude compared to
those captured by conservative ADHD instruments with,
for example, a 0.03 SD decrease in pooled reading per-
formance per log-odds increase in ADHD risk (βADHD

= -0.03(SE= 0.01), P= 1.4 × 10−6, Table 3). Comparing
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ADHD-specific effects on both reading and spelling with
ADHD-specific effects on all other LRAs provided evi-
dence for effect differences (Pmod= 0.016), with stronger
ADHD effects on literacy-related abilities, in particular
spelling (Table S10).
Polygenic ADHD effects that are shared with EA were

identified for all LRAs studied using subthreshold, but not
conservative ADHD instruments (Table 3). This translates
into, for example, a further 0.50 SD units decrease in

pooled reading performance per missing school year (βEA
=−0.50(SE= 0.09), P= 4.9 × 10−8, Table 3). Thus, the
observed association between polygenic ADHD risk and
listening comprehension and non-word repetition is fully
attributable to genetic effects shared with EA (Table 3).
Contrary to ADHD-specific effects, ADHD effects shared
with EA showed no evidence for effect differences
between literacy-related versus other LRAs (P= 0.31).
Conducting MVR with fully standardised estimates
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Fig. 1 Phenotypic variance in literacy-related and language-related abilities explained by polygenic ADHD risk a accuracy, c comprehension,
s speed, WORD Wechsler Objective Reading Dimension, NBO Nunes, Bryant and Olson (ALSPAC specific instrument), NARA II The Neale Analysis of
Reading Ability-Second Revised British Edition, TOWRE Test Of Word Reading Efficiency, NW non-word, NB Nunes and Bryant (ALSPAC specific
instrument), PhonAware phonemic awareness, AAT Auditory Analysis Test, WOLD Wechsler Objective Language Dimensions, CNRep Children’s Test
of Nonword Repetition, VIQ verbal intelligence quotient, WISC-III Wechsler Intelligence Scale for Children III, PGC Psychiatric Genomics Consortium,
iPSYCH The Lundbeck Foundation Initiative for Integrative Psychiatric Research, ADHD Attention-Deficit/Hyperactivity Disorder a Schematic
representation of polygenic scoring analyses. ADHD polygenic scores were created in ALSPAC using PGC, iPSYCH and PGC+ iPSYCH GWAS summary
statistics. Rank-transformed LRAs were regressed on Z-standardised ADHD-PGS using ordinary least square regression. b Phenotypic variance in
literacy-related and language-related abilities explained by polygenic ADHD risk. *Evidence for association between LRAs and polygenic ADHD risk as
observed in PGC ADHD, iPSYCH ADHD and PGC+ iPSYCH ADHD samples. Note that all LRAs were associated with polygenic ADHD risk in iPSYCH
ADHD and PGC+ iPSYCH ADHD passing the experiment-wide error rate (P < 0.007)
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showed that ADHD effects shared with EA were as large
as or even larger compared to ADHD-specific effects (Fig.
2c, Table S9).
Using an analogous approach, we disentangled the

genetic overlap between polygenic EA and LRAs into
genetic EA effects independent of and shared with ADHD,
based on EA instruments (Fig. S1). There was strong evi-
dence for EA effects shared with ADHD using subthres-
hold, but not conservative EA instruments (Table S11). The
magnitude of ADHD genetic effects shared with EA, cap-
tured by ADHD genetic instruments, compared to the
magnitude of EA genetic effects shared with ADHD, cap-
tured by EA instruments, was largely consistent with each
other in fully standardised analyses (Tables S9 and S11).
There was little evidence supporting the inclusion of

regression intercepts in MVR that would imply additional
genetic effect variation in LRAs estimates, not yet cap-
tured by either ADHD or EA effect estimates, based on
the selected instruments. Therefore, all MVRs were per-
formed using constrained intercepts26.

Attrition in ALSPAC
Analyses of sample drop-out in ALSPAC, exemplified

by missing reading accuracy and comprehension scores at
age 7 (WORD), revealed a positive genetic association
between missingness and polygenic ADHD risk (min P=
1.4 × 10−8, Supplementary Information, Table S12, Table
S13).

Discussion
This study identified strong and replicated evidence for

an inverse association between polygenic ADHD risk and
multiple population-based LRAs using a polygenic scoring
approach. However, these associations involve shared
genetic variation with genetically predictable EA. Accu-
rate modelling of polygenic links using MVR techniques,
conditional on EA, revealed an ADHD-specific associa-
tion profile that primarily involves literacy-related
impairments. Once shared genetic effects with EA were
accounted for, polygenic ADHD risk was most strongly
inversely associated with reading and/or spelling abilities,

β

β

Fig. 2 Genetic relationships between ADHD, educational attainment and literacy-related and language-related abilities ADHD Attention-
Deficit/Hyperactivity Disorder, EA educational attainment, LRAs literacy and language-related abilities, PGC Psychiatric Genomics Consortium, iPSYCH
The Lundbeck Foundation Initiative for Integrative Psychiatric Research; SSGAC Science Genetic Association Consortium, ALSPAC Avon Longitudinal
Study of Parents And Children, MVR multivariable regression. a Hypothesised biological model of genetic relationships between ADHD, EA, and LRAs
reflecting complex, pleiotropic and reciprocal genetic links that prevent causal inferences. b Schematic MVR model assessing polygenic ADHD-LRA
overlap independent of and shared with genetic effects for EA. c MVR estimates of ADHD-specific effects independent of EA and ADHD effects
shared with EA on LRAs using standardised ADHD instruments: Sets of conservative (P < 5 × 10-8) and subthreshold (P < 0.0015) ADHD instruments
were extracted from ADHD (PGC+ iPSYCH), EA (SSGAC) and LRAs (ALSPAC) GWAS summary statistics. ADHD-specific effects independent of EA
(βADHD) and ADHD effects shared with EA (βEA) on LRAs were estimated with MVRs. To compare the magnitude of βADHD and βEA, MVR analyses were
conducted using standardised regression estimates (Supplementary Methods). βADHD estimates measure the change in LRA Z-score per Z-score in
ADHD liability. βEA estimates measure the change in LRA Z-scores per Z-score in missing school years. MVR estimates based on raw genetic effect
estimates are provided in Table 3. Pooled estimates for reading, spelling and global LRA measures (Table 1) were obtained through random-effects
meta-regression. Only effects passing the experiment-wide significance threshold (P < 0.007) are shown with corresponding 95% confidence
intervals. There is no causality inferred
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in addition to phonemic awareness and verbal intelli-
gence, but not listening comprehension and non-word
repetition abilities. Importantly, genetic overlap between
polygenic ADHD risk and all of the LRAs studied was
inflated by genetic effects shared with EA.
Using independent ADHD discovery samples, these

findings show that genetic overlap between ADHD and
literacy-related impairments observed in twin and family
studies16–18 can be extended to genetic associations, as
captured by common variation in general population
samples. The identified association profile suggests that
not only reading-related abilities (including both word
and nonword reading skills), but also phonological and
spelling-related abilities share genetic aetiology with
ADHD. These interrelated LRAs may, as hypothesised for
RD, arise from a phonological impairment48,49, which
affects decoding and reading skills50, but also spelling
abilities51. However, reading abilities can, once developed,
also shape phonological skills52.
In addition, this study suggests that genetic associations

between polygenic ADHD and LRAs reflect, at least par-
tially, shared genetic influences with genetically pre-
dictable EA and that, equally likely, genetic associations
between polygenic EA and LRAs share genetic influences
with ADHD. The magnitude of these shared effects,
modelled with different MVR approaches, was compar-
able with each other. This is consistent with reciprocal
genetic influences between EA and ADHD (Fig. 2a) and
supports an intergenerational multiple-deficit model
proposed for reading disability15,53. Children growing up
in disadvantaged environments, genetically predictable
through polygenic EA scores54, might be more vulnerable
to psychiatric illness including ADHD55 that affects, in
turn, their LRAs. In addition, adolescents with ADHD
might be more likely to leave school at an earlier age, with
lower LRA performance and EA, and pass on an increased
genetic load to their own children56.
Here, we demonstrate that disentangling multivariate

genetic interrelationships between ADHD, EA and LRAs
using MVR can aid the interpretation of genetic overlap,
while controlling for collider bias42. However, using MVR,
the detection of these polygenic associations was strongly
governed by the choice of genetic variants. Conservative
ADHD instruments identified large ADHD-specific
effects on reading as a domain and little evidence for
genetic effects that are shared with EA, although they had
limited power57. They comprised 15 independent SNPs
only, including variation within FOXP2, a gene that has
been implicated in childhood apraxia of speech and
expressive and receptive language impairments (http://
omim.org/entry/602081)58. On the other hand, subthres-
hold instruments, including thousands of variants, tagged
ADHD-specific polygenic links with LRAs (conditional on
EA) with smaller effects, but with higher predictive

accuracy. However, these instruments also captured
shared genetic effects with EA, affecting polygenic links
between ADHD and all of the LRAs studied. These shared
genetic influences were of equal strength and at least
equal magnitude compared to ADHD-LRA associations
independent of EA. Contrary, a previous twin study
showed that the genetic covariance between ADHD and
reading difficulties was largely independent of genetic
effects shared with IQ19, suggesting that our findings may
also reflect socio-economic influences. Thus, in order to
improve reading and, more generally, literacy-related
deficits in children with ADHD, there is potentially a
need for further intervention programmes targeting EA-
independent underlying neurocognitive deficits, beyond
general training programmes aiming at schooling
outcomes59.
In general, our findings are consistent with an omni-

genic60 model of complex trait architectures, compatible
with a general factor model of psychopathology61,
including ADHD62. The omnigenic model construes that
only the largest-effect variants will reflect ADHD speci-
ficity, and may thus tag the most trait-specific associations
between ADHD and reading, independent of EA. The
majority of variants, however, will capture pleiotropic
(omnigenic) influences pointing to highly interconnected
neural networks60 that give rise to genetic confounding.
Consequently, the majority of subthreshold variants,
captured by both ADHD and EA subthreshold variants,
are likely to represent highly powerful cross-trait genetic
predictors that may enhance and induce genetic overlap.
Finally, the methodological framework within this work

has not only relevance for studies investigating polygenic
links between ADHD and LRAs, but for many studies
examining multivariate trait interrelationships that
involve shared genetic effects with a genetically pre-
dictable confounder. Specifically, our findings suggest that
lower variant selection thresholds can introduce genetic
variance sharing that is unspecific and needs to be
accounted for before identified associations can be
interpreted in terms of underlying mechanisms, including
shared genetic aetiologies. This is especially important as
current guidelines for studying polygenic links with allelic
scores recommend aggregating genetic variants across
less stringent significance thresholds to maximise genetic
association between discovery and target samples63,64.
This study has several limitations. Firstly, ALSPAC, as

other cohort studies, suffers from attrition65,66. Sensitivity
analyses showed that this is unlikely to bias our findings
based on conservative instruments. However, links iden-
tified using subthreshold ADHD variants, might have
been underestimated given that individuals with a genetic
predisposition to ADHD (but also smoking initiation,
higher body mass index, neuroticism, schizophrenia and
depression) are more likely to drop out66. Secondly, the
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strength of the genetic overlap between polygenic ADHD
risk and LRAs may vary according to ADHD symptom
domain levels, implicating especially inattentiveness67, as
well as the nature of the literacy-related or language-
related ability involved (as we observed evidence for effect
heterogeneity when combining all LRAs). It is conceivable
that also other verbal abilities, not investigated in this
study, such as grammar, expressive vocabulary or prag-
matic skills, may genetically overlap with ADHD. Fur-
thermore, we only studied the extent to which shared
genetic variance with EA affects the genetic association
between ADHD and LRAs. However, we found little
evidence for the presence of additional unaccounted for
genetic influences using these instruments, i.e., effects
that are not yet captured by either genetically predicted
ADHD or EA. Finally, the power of available LRA GWAS
summary statistics is still too low to generate genetic
instruments supporting reverse models. Larger and more
detailed clinical and population-based samples, as well as
extensive multivariate variance analyses of the spectrum
of LRAs (that are currently computationally expensive68)
will help to further characterise the overlap between
ADHD and literacy-related and language-related cogni-
tive processes.

Conclusion
Polygenic associations of clinical ADHD and a range of

LRAs are to a large extent attributable to genetic effects
that are also shared with EA, especially when investigated
with genetic variants typically selected for polygenic
scoring approaches. Adjusting for these unspecific genetic
effects reveals an ADHD-specific association profile that
primarily involves literacy-related impairments.
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