
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/179127

Please be advised that this information was generated on 2019-11-21 and may be subject to

change.

http://hdl.handle.net/2066/179127

Proceedings of Machine Learning Research vol 73:141-152, 2017 AMBN 2017

Reducing the Cost of Probabilistic Knowledge Compilation

Giso H. Dal, Steffen Michels and Peter J.F. Lucas
Institute for Computing and Information Sciences

Radboud University

Nijmegen (The Netherlands)

{gdal,s.michels,peterl}@cs.ru.nl

Abstract

Bayesian networks (BN) are a popular representation for reasoning under uncertainty. The
computational complexity of inference, however, hinders its applicability to many real-world
domains that in principle can be modeled by BNs. Inference methods based on Weighted
Model Counting (WMC) reduce the cost of inference by exploiting patterns exhibited by the
probabilities associated with BN nodes. However, these methods require a computationally
intensive compilation step in search of these patterns, limiting the number of BNs that are
eligible based on their size. In this paper, we aim to extend WMC methods in general
by proposing a scalable, compilation framework that is language agnostic, which solves
this problem by partitioning BNs and compiling them as a set of smaller sub-problems.
This reduces the cost of compilation and allows state-of-the-art innovations in WMC to be
applied to a much larger range of Bayesian networks.

Keywords: Bayesian networks, knowledge compilation, probabilistic inference, weighted
model counting.

1. Introduction

The field of probabilistic inference has made considerable progress in the past three decades
by the development of novel probabilistic graphical models that support obtaining sparser
probability distributions. The use of graphical models has resulted in the ability to solve
much bigger probabilistic models than previously was possible. In particular, Bayesian
networks (BNs) have become popular graphical models for reasoning under uncertainty.
Despite progress in probabilistic inference, the NP hardness of probabilistic inference has
remained a stumbling block for using exact inference in real-world domains. Usually,
researchers resort to employing approximate probabilistic reasoning under such circum-
stances, which at least gives them results, but the computational complexity is not any
better (Dagum and Luby (1993)).

Exact probabilistic inference has predominantly been performed by (variations of) the
Junction Tree algorithm (Lauritzen and Spiegelhalter (1988)), which optimizes inference
by reusing intermediate computations where possible. Most further improvements in prob-
abilistic inference have been made by exploiting patterns present in probability tables,
reducing size and reasoning requirements, e.g., by capturing these in a more concise sym-
bolic representation as offered by Weighted Model Counting (WMC) (Bacchus et al. (2003)).
However, the computational complexity of the compilation step required to obtain such an
optimized symbolic representation also puts limits to the usefulness of these algorithms.

In the present paper we extend inference methods based on WMC by addressing these is-
sues. A scalable framework is proposed that deals with the compilation bottleneck, allowing

1

Dal, Michels and Lucas

state-of-the-art innovations in WMC to be used even in cases when the compilation costs
become unacceptable. The solution discussed is to partition probabilistic models. Each
partition in turn is compiled into a symbolic representation. We show how to maintain a
consist model count with regard to the probability distribution when using this partitioned
representation in order to perform inference.

The contributions of this paper are as follows. We introduce a language agnostic frame-
work, facilitating the partitioning and compilation of BNs, and performing probabilistic
inference using these partitioned representations. As a result, the cost of compilation is
drastically reduced, while at the same time improving the capability to exploit aforemen-
tioned patterns. This allows partitions to be ordered independently, rather than maintaining
one global ordering, and provides more fine grained control to exploit structure and net-
work topology. Additionally, we propose an upperbound on the size of compiled symbolic
representations, and use it in a new algorithm to determine compilation orderings and
partitions.

2. Related Work

Advancements in exact probabilistic inference essentially find ways to perform as few oper-
ations as possible, either by identifying and eliminating redundant computations or finding
more concise factorizations of a problem domain than possible with BNs.

Bayesian networks represent concise factorizations of a probability distribution by using
conditional independence assumptions. Further improvements to a factorization have been
made by exploiting causal (Heckerman and Breese (1996)), as well as contextual indepen-
dence (Boutilier et al. (1996)), and determinism (Friedman and Goldszmidt (1998)), i.e.,
local structure.

However, explicit support for local structure is not provided by BNs. Initial attempts to
capture local structure include probability trees (Cano et al. (2009)), which are then used
in inference algorithms directly.

More recent work relies on the use of graphs, rather than only trees, and reduces inference
to Weighted Model Counting (WMC). Numerous languages have been used to represent local
structure more concisely. Examples include Sentential Decision Diagrams (SDD) (Choi et al.
(2013)), Ordered Binary Decision Diagrams (OBDD) (Nielsen et al. (2000)) and Weighted
Positive Binary Decision Diagrams (WPBDD) (Dal and Lucas (2017)), among many others.
Unfortunately, the cost of compiling a BN into a symbolic representation based on these
languages remains a bottleneck. It is exactly this issue that we tackle in this paper.

3. Preliminaries and Background

3.1 Bayesian Networks

A Bayesian network (BN) offers a concise factorization of a probability distribution based
on independence assumptions. They model conditional independence (CI) as a directed
acyclic graph (DAG) by representing independencies among variables X = {x1, . . . , xn} as
the absence of (directed) edges, and their joint probability distribution as:

P (X) =
n∏

i=1

P (xi | Parents(xi)),

2

Reducing the Cost of Probabilistic Knowledge Compilation

where P (xi | Parents(xi)) represents the conditional probabilities of variable xi given its
parents Parents(xi). The degree to which variables are dependent is captured by Con-
ditional Probability Tables (CPTs) associated with every node. Example 1 demonstrates
the graphical representation alongside its CPTs and factorization. Note that the example
is designed to demonstrate the techniques presented throughout this paper, and should not
be considered a typical Bayesian network.

Example 1 Let a joint probability distribution be defined over variables X = {a, b}. Fig-
ure 1 shows its factorization as a BN together with its corresponding CPTs.

a b P (X)

1 1 0.4
1 2 0.4
2 1 0.05
2 2 0.05
3 1 0
3 2 0.1

(a) Joint distribution

a b

P (X) = P (b|a)P (a)

(b) Bayesian network

P (a = 1) P (a = 2) P (a = 3)

0.8 0.1 0.1

a P (b=1|a) P (b=2|a)

1 0.5 0.5
2 0.5 0.5
3 0 1

(c) Conditional probability tables

Figure 1 Bayesian network with local structure

3.2 Inference by Weighted Model Counting

The idea behind the WMC approach is to improve the efficiency of exact probabilistic in-
ference, by improving a BN’s factorization in the presence of local structure: (repetitive)
patterns exhibited by conditional probabilities, given a certain context. This structure
can be exploited through basic algebraic properties, removing one-valued terms in mul-
tiplications and zero-valued terms in additions, distributing exponents over products, or
condensing equivalent summands and factors. Simplification relies on the extent to which
these patterns are present, and the ability to find and exploit them.

WMC methods most commonly rely on the advances made in the field of Satisfiability
solving, and typically consist of the following steps: A BN is encoded as a Boolean formula.
This formula is compiled into a chosen logical language, taking into account the tradeoff
between its ability to capture local structure vs. compilation time. Compilation can be
achieved by using DPLL-style SAT solvers (Davis et al. (1962)), and recording evaluation
paths in a manner determined by the chosen language. The arithmetic circuit induced by
the obtained symbolic representation is then used to perform inference (Sang et al. (2005)).

Languages proposed in the context of compilation try to find the right tradeoff by
imposing various restrictions in favor of tractability. Restrictions that have proven to be
useful in canonical languages require each subfunction to be deterministic, unique and
read-once: each variable occurs at most once along every path, typically in the same order.
Finding the optimal factoring given such a language reduces to finding the optimal variable
ordering. Unfortunately, the complexity of compilation given one ordering can already be
exponential in the worst case (Bollig and Wegener (1996)).

3

Dal, Michels and Lucas

3.3 Partitioning

Symbolic languages used in the field of WMC produce representations that are deterministic,
as this property has computational advantages. Allowing non-determinism has shown to
produce much more concise representations, but many operations would become intractable.
We therefore employ a restricted form of non-deterministic partitioning (Bollig (2001)).

We partition the BN by finding a cut along the edges that decomposes the graph into
two or more components. The partition set refers to the nodes in the component, and its
cutset is comprised of the parents of nodes that have been orphaned by the cut. Multiple
partitions will essentially depend on the variable in this cutset, which is the source of non-
determinism. We aim to seek a judicious partitioning of BNs, i.e., a partitioning where
multiple properties must be optimized at the same time: a partitioning that significantly
reduces compilation cost, while minimizing the effect on inference cost by keeping cutsets
as small as possible.

4. A Scalable Approach to Inference by Weighted Model Counting

The Weighted Model Counting (WMC) approach to inference has proven to be greatly ben-
eficial with regard to a substantial number of real world problems. However, its application
has been restricted due to the cost of compilation. We introduce a framework that deals
with this problem using partitioning, affecting every stage traditionally present in the WMC
approach. The framework consists of 4 distinct phases:

1. Partition: Partition a BN into k components.
2. Compilation: Encode and compile each component individually.
3. Assembly : Connect compiled representations.
4. Inference: Perform inference by WMC using assembled representation.
In this section, we provide insight into the advantages of partitioning and how to retain a

consistent model count with regard to the probability distribution. We dedicated Section 5
to the partition phase where we elaborate on the mechanics involved in finding a good
partitioning in the context of BNs.

4.1 Compiling Partitioned Bayesian Networks

Our framework reduces compilation cost, which essentially allows us, given an appropriate
partitioning, to employ WMC methods to any BN regardless of compilation language and
ordering. Without loss of generality we will use a particular combination of encoding and
language for demonstration purposes, producing one variety of decision diagram, called
Weighted Positive Binary Decision Diagram (WPBDD) (Dal and Lucas (2017)).

Let a Bayesian network be defined over variables X. It is encoded into a Boolean
formula f , and we explore valuations of this formula through assignment of truth values by
conditioning f on instantiated variables, defined as the projection:

f|xi←b(x
1, . . . , xn) = f(x1, . . . , xi−1, b, xi+1, . . . , xn), (1)

with b ∈ {0, 1}. We use shorthand notations fx and fx to denote f|x←1 and f|x←0, re-
spectively. Evaluation paths are recorded as a decision diagram where each node denotes
a portion of the logical circuit it induces. Formula f essentially depends on atoms A(X),

4

Reducing the Cost of Probabilistic Knowledge Compilation

by introducing atom xi for each unique variable-value pair: A(x) = {x1, . . . , xn} for each
x ∈ X, where n is determined by D({x}) using domain function D:

D(Y) =
∏
x∈Y
|x|, (2)

where |x| denotes the dimension of x ∈ X. Finally, unique symbolic weights ωj identify
distinct probabilities local to x’s CPT. We thus introduce into f a clause for each weight ωj

containing the variables on which the weight depends, and clauses to represent constraints
among variables (Dal and Lucas (2017)).

Figure 2 show a decision node, where the solid and dotted edges indicate the assignment
of true and false to xi, respectively, where f‖xi

is called the positive cofactor and is obtained
by conditioning f on xi ∈ A(x) and xj for all xj ∈ A(x)\xi. fxi is the negative cofactor.

xi

ωj

f‖xi fxi

(a) WPBDD node

=⇒

∨
∧ fxi

xi ∧
ωj f‖xi

(b) Logical circuit

Figure 2 From node to logical circuit

When partitioning BNs we must consider their semantics: it’s a factorization, where
conditional probabilities are expressed in the underlying CPTs. Based on the definitions
provided in Section 3.3, the cutset is essential to a partition, because the conditional prob-
abilities of node x depend on Parents(x) in addition to x itself. This means that the
Boolean function representing a particular partition containing variable x, essentially de-
pends on variables A(x) ∪ A(Parents(x)).

Example 2 Consider the BN of Example 1. Figure 3 shows a cut that decomposes it into
two components. The partition- and cutset of partition 1 are {a} and {}, and those of par-
tition 2 are {b} and {a}, respectively. We have identified equal probabilities per CPT, and
have encircled the way structure is captured given the orderings used during compilation.
Note that deterministic probabilities (0 and 1, represented as ω4 and ω5) are captured through
appropriate edge connections and are therefore not explicitly present as edge weights. Par-
ticular to WPBDDs, any literal indicated in the ordering that is not present as the negative
cofactor of its parent, infers that they have equivalent positive cofactors and that morgan’s
law has been applied.

Several advantages to partitioning become evident from Example 2: (1) reduced compi-
lation cost, and (2) improved capability of exploiting local structure through independent
partition orderings. Let’s elaborate on that.

The computational complexity of compilation can quickly become discouraging. Con-
sider individual probabilities as distinct constraints that collectively represent a BN. Each
probability ωj local to x’s CPT essentially depends on variables A(x) ∪ A(Parents(x)).
This means that there are as many constraints as there are entries in all CPTs. In Exam-
ple 2, instead of compiling a monolithic BN consisting of 9 constraints, we compile two BNs

5

Dal, Michels and Lucas

a b

Partition 1 Partition 2

cut

(a) Partitioning

P (a = 1) P (a = 2) P (a = 3)

ω1 ω2 ω2

a P (b=1|a) P (b=2|a)
1 ω3 ω3

2 ω3 ω3

3 ω4 ω5

(b) Capture symbolic structure in CPTs

a3

a1

01

ω2

ω1

(c) Partition 1.
Compilation with order:

a3 ≤ a2 ≤ a1

a1

a3

b1 b1

b2

01

ω3

(d) Partition 2.
Compilation with order:
a1 ≤ a2 ≤ a3 ≤ b1 ≤ b2

Figure 3 Compilation of a partitioned BN,
where xi signifies x being equal to its ith value.

consisting of 3 and 6 constraints. As compilation can be of exponential complexity (Bol-
lig and Wegener (1996)) and is dominated by these constraints, we have found a scalable
approach to compilation for the WMC approach.

The degree to which we can exploit problem structure is determined by the ordering
used during compilation. An ordering that is good for one part of the network, might not
be well suited for another. We improve upon this by allowing partitions to be ordered
independently, rather than having one global ordering, thus allowing more fine grained
control to exploit structure and capturing network topology.

4.2 Inference using Compiled Partitions

We need to take extra measures in order to maintain a consistent model count with regard
to the probability distribution. In order to perform inference we connect compiled partitions
as a tiered architecture, where edges to the true terminal in one tier are extended to
the root node of the compiled partition in the next tier. By doing this we essentially
lose the read-once property due to non-determinism: cutset variables are shared among
multiple partitions and can therefore occur multiple times along each path. We can maintain
consistency through dynamic conditioning : as we traverse depth-first through the connected
representation, we make decisions persistent, i.e., we make the same decision we had made
previously. This can also be achieved through static conditioning : we build a monolithic
representation, not by conjoining compiled partitions, but by appropriately conditioning
and connecting them.

The variables of interest with regard to maintaining consistency are precisely those upon
which multiple partitions essentially depend. These persistence variables must retain their
value in all subsequent tiers once a decision had been made. This creates a dependency
spanned from the first to last tier where a particular persistence variable occurs in. Each

6

Reducing the Cost of Probabilistic Knowledge Compilation

Algorithm 1 Dynamic conditioning

IsConditioned(node,E, tier)

1 v = Variable(node)
2 return Ev < tier

GetCacheId(S,E, tier)

1 id = 0, exp = 1
2 for variable in Stier

3 id += GetV alueIndex(variable) ∗ |variable|exp
4 exp = exp + 1
5 return id

TraverseTier(P, S,E, tier)

1 if tier == |P |
2 return 1
3 else
4 cacheid = GetCacheId(S,E, tier)
5 if IsCached(cacheid, tier)
6 return GetCachedValue(cacheid, tier)
7 else
8 Initialize(Ptier)
9 p = Traverse(Ptier, P, S,E, tier)

10 CacheValue(cachid, tier, p)
11 return p

Traverse(node, P, S,E, tier)

1 if IsTrueTerminal(node)
2 return TraverseTier(P, S,E, tier+1)
3 elseif IsFalseTerminal(node)
4 return 0
5 elseif IsTraversed(node)
6 return GetProbability(node)
7 else
8 pt = 0, pe = 0
9 if not IsConditioned(node,E, tier)

or IsTrue(node)
10 v = Variable(node)
11 Ev = tier
12 pt = Traverse(node.t, P, S,E, tier)
13 if not IsConditioned(node,E, tier)

or IsFalse(node)
14 pe = Traverse(node.e, P, S,E, tier)
15 return Probability(node, pt, pe)

ComputeProbability(P, S,E)

input: Partition roots P , spanning sets S
and evidence E

output: probability given evidence E

1 return TraverseTier(P, S,E, 1)

tier is associated with spanning set containing the persistence variables that take part in
the aforementioned dependency. Together, these sets are used for caching purposes.

Algorithm 1 shows how to perform inference using dynamic conditioning. Partitions are
traversed in the order imposed on P , starting at their root Pi. The values of evidence array
E are initialized to∞, and for each observed BN variable x to 0. Function IsConditioned
thus determines if a variable has been assigned to in a preceding tier during the traversal,
or was part of the evidence from the start. GetCacheId returns a unique key determined
by a particular assignment of truth values to persistence variables present in the spanning
set, corresponding to the given tier. Using this prevents unnecessary traversal of subsequent
tiers. The algorithm can be extended for static conditioning, by using the same principles
used in GetCacheId to choose a correct conditioned partition in subsequent tiers.

Example 3 Consider the compiled partitions of Example 2. Figure 4 shows how we connect
them. Both partitions represent functions that depend on A(a) = {a1, a2, a3}, i.e., the
persistence variables. The spanning sets therefore are S0 = {} and S1 = {a}.

Consider Figure 4a. Assume that we have traversed partition 1 depth-first and have
encountered the true terminal based on decision a3 = true. When continuing to partition 2
we employ dynamic conditioning by restricting its traversal. This is done by not considering
the positive cofactors of nodes that represent atoms a1 and a2, nor the negative cofactor of
a3.

Figure 4b shows that the compiled representation of partition 2 is conditioned on its per-
sistence variables that have occurred in a preceding tier, i.e., D(S1) = 3 times. Observe that
this is an upperbound in the number of distinct conditioned partitions, and can be reduced
when equivalent representations are revealed. This occurs as the result of conditioning in

7

Dal, Michels and Lucas

P
artition

2

a 1

a 3

b 1
b 1

b 2

0
1

ω3

P
artition

1

a 3
a 1

0
1

ω2 ω1

Tier 1

Tier 2

(a) Dynamic conditioning

P
artition

2

Condi
tion

ed on a1, a2

b 1

0
1

ω3

P
artition

2

Condi
tion

ed on a3

b 1 b 3

0
1

{a}
1,
2

3

P
artition

1

a 3
a 1

0
1

ω2 ω1Tier 1

Tier 2

(b) Static conditioning

Figure 4 Tiered architecture

Tier 2. The traversal is similar to the dynamic approach, except here we have added explicit
logic between partitions responsible for choosing the correct conditioned partition.

Both approaches have their own strengths. By using the dynamic conditioning approach
we move some of the workload away from compilation, toward the inference phase. We are
ready to perform inference immediately after compilation and are able to easily change the
order in which partitions are connected, to better accommodate inference query optimiza-
tions. Building a monolithic representation through the static approach requires a fixed
connection ordering, upon which it bases its conditioning and connection strategy. Advan-
tageous to this approach is that it preserves the computational complexity of inference as
linear in the size of the representation, however, at the cost of space.

5. Finding a Good Partitioning

The bottleneck of the WMC approach to probabilistic inference is compilation. Partitioning
influences both compilation and inference cost, and obtaining one of high quality is therefore
crucial. We search for a good partitioning by providing implications to its quality through
the use of an upperbound on the size of the resulting symbolic representation.

5.1 Finding Partitionings and Variable Orders

The size of symbolic representations depends on the ordering that is imposed on the vari-
ables during compilation. In Section 5.2 we introduce an upperbound on the size of these
representations. We search for good orderings by minimizing this upperbound. We have
used simulated annealing to perform this task, as it seemed best suited.

The size implications provided by the upperbound are also used in the search for parti-
tionings. However, the search space is too large for straightforward traversal. We therefore
recursively split the partition with the largest bound, until a desirable overall bound is
reached. We additionally reduce the state space by making sure that partitions represent

8

Reducing the Cost of Probabilistic Knowledge Compilation

Algorithm 2 Computing upperbound

SpanningVariables(C,O)

input: Constraints C and ordering O
output: Spanning variables S

1 S = ∅
2 for l = 1 to |O|+ 1
3 Sl = {}
4 for i = 1 to |C|+ 1
5 if Ci ∩ {o1, . . . , ol−1} 6= Ci

6 Sl = Sl ∪ (Ci ∩ {o1, . . . , ol−1})
7 return S

Opn(C,O, l)

input: Constraints C, ordering O, level l
output: Logical operators per node

1 weights = 0
2 for i = 1 to |C|+ 1
3 if Ci\{o1, . . . , ol−1} = ol
4 weights += 1
5 return 2 + weights

Upperbound(C,O)

input: Constraints C and ordering O
output: Number of logical operators

1 operators = 0
2 S = SpanningVariables(C,O)
3 for l = 1 to |S|+ 1
4 nodes = D(Sl ∪ {ol})
5 operators += nodes ∗Opn(C,O, l)
6 return operators

connected components in the moralized graph of the BN. Connected partitions generally
produce smaller representations, while minimizing the number of variables in their cutset.

5.2 An Upperbound

Let a Bayesian network be defined over n variables X. We formulate it as a set of constraints
Cx ∈ C, where Cx represents the dependencies of variable x ∈ X:

Cx = {x} ∪Parents(x). (3)

During compilation, variables are evaluated one by one using a particular ordering O =
{o1, . . . , on} imposed on X by π, where oi = π(x), oj ≤ ok for j < k. A constraint set Cx

is satisfied at a particular evaluation depth, or level, when all its variables are evaluated
on that level, i.e., if Cx ⊆ {o1, . . . , ol} on level l. A constraint Cx is spanned over multiple
levels from the moment it is partially- until fully satisfied.

The upperbound on the size of the compiled representation is a cumulative measure
determined by the domain size of spanning variables Sl ∈ S associated with each level l.
Spanning variables Sl are precisely those variables that partially satisfy constraints Cx on
level l − 1:

Sl = {o1, . . . , ol−1} ∩
⋃

{Cx ∈ C : Cx ⊆ {o1,...,ol−1}}

Cx (4)

A generalized upperbound depending solely on the structure of a BN is computed by:

n∑
l=1

D(Sl), (5)

where the domain size D(Sl) of spanning variables Sl on level l represents the maximum
number of (multi-valued) decision nodes required to represent the BN on that level. This
occurs in the absence of local structure. The bound can be determined specifically for
WPBDDs using Algorithm 2, which is based on Definition 1 and demonstrated in Example 4.

9

Dal, Michels and Lucas

le
ve
l
1

le
ve
l
2

P (a=1) P (a=2) P (a=3)

ω1 ω2 ω3

a P (b=1|a) P (b=2|a)
1 ω4 ω5

2 ω6 ω7

3 ω8 ω9

a

bbb

1

ω3ω2ω1

ω8

ω9

ω6 ω7ω5

ω4

1 2 3

1 2 1 2 1 2

D
(S

1
)

=
1
n
od
e

D
(S

2
)

=
3
n
od
es

D
(S

1
∪
{a

})
=

3
n
od
es

D
(S

2
∪
{b
})

=
6
n
od
es

a1

a2

a3

b1

b2

b1

b2

b1

b2

1 0

ω1

ω2

ω3

ω4
ω6

ω8

ω5

ω7
ω9

Figure 5 From generalized to tailored upperbound,
where xi signifies x being equal to its ith value.

Definition 1 Let a BN be defined over variables X, with its dependency relations rep-
resented as constraints Cx ∈ C for each x ∈ X (Equation 3). Given ordering O =
{o1, . . . , on}, an upperbound on the size of the corresponding WPBDD is determined by:

n∑
l=1

D(Sl ∪ {ol}) ∗ Opn(C,O, l),

where the size on level l is determined by ol ∈ O, Sl ∈ S (Equation 4), and Opn
(Algorithm 2) returns the number of logical operators per node.

Example 4 Consider the BN of Example 1. Its dependence relations are formulated as
constraints C = {{a}, {a, b}} (Equation 3). Assuming no local structure, Figure 5 shows
multi-valued (left) and binary decision diagram (right) representations of the BN, given
variable ordering O, a ≤ b, and a corresponding literal ordering a1 ≤ a2 ≤ a3 ≤ b1 ≤
b2, respectively. It shows how the general upperbound relates to the tailored one. Given
constraints C and variable ordering O, the spanning variable sets S are S1 = {} and S2 =
{a}. The upperbound of the WPBDD is thus computed by:

D(S1 ∪ {a}) ∗Opn(C,O, 1) +D(S2 ∪ {b}) ∗Opn(C,O, 2) = 3 ∗ 3 + 6 ∗ 3 = 27.

6. Empirical Results

We have used several publicly available Bayesian networks to empirically demonstrate the
effects of our framework on compilation and inference cost. Table 1 shows compilation size
and time for multiple representations given the same ordering. For SDDs this ordering was
used to induce a balanced vtree, which was then used as a starting point for compilation.
More important than whether or not a particular ordering is best suited for certain repre-
sentations, is the fact that BNs can be compiled that previously could not even be compiled
given this ordering by using partitioning. Additionally, compilation size and time have both
significantly reduced, sometimes by many orders of magnitude, while using a very limited

10

Reducing the Cost of Probabilistic Knowledge Compilation

Bayesian WPBDD WPBDD SDD OBDD
Network X A(X) P S T S T S T S T

insurance 27 89 2 33183 0.014 348956 0.077 1731415 2.046 1263540 0.289
weeduk 15 90 2 30735 0.406 30733 0.418 - - 109734 0.176
alarm 37 105 2 2730 0.003 3788 0.003 35004 0.054 10008 0.003
water 32 116 2 49212 0.095 219797 0.506 - - - -
powerplant 40 120 2 2451 0.002 4158 0.003 26662 0.038 11043 0.002
carpo 54 122 2 1937 0.003 2377 0.003 13405 0.028 7179 0.003
win95pts 76 152 2 49405 0.018 810957 0.361 1109210 2.057 4876152 4.997
hepar2 70 162 2 33234 0.025 56574 0.033 188453 2.423 142806 0.161
fungiuk 15 165 2 79682 1.515 234322 7.763 - - 733551 0.812
hailfinder 56 223 2 225325 0.052 4025502 1.395 10508499 7.51 31493220 12.435
3nt 58 228 2 9844 0.015 858645 0.578 42774722 58.905 15592962 19.493
4sp 58 246 2 83156 0.035 918353 0.352 - - 20558352 34.598
barley 48 421 2 13721258 11.197 - - - - - -
mainuk 48 421 2 9045244 9.002 - - - - - -
andes 220 440 2 426513 0.117 - - - - - -
pathfinder 135 520 2 143032 0.493 577163 0.717 2287777 23.337 5732988 18.656
mildew 35 616 2 1634250 111.434 5666709 113.264 - - - -
munin1 186 992 4 13196919 6.693 - - - - - -
pigs 441 1323 9 3292450 1.534 - - - - - -

Table 1 Compilation cost,
where X and A(X) are the number of variables in the BN and encoding, S is the number of logical

operators that the symbolic representation induces, time T is in seconds, P is number of
partitions, and - implies compilation failure due to memory requirements.

number of partitions. The results indicate that multiple representations can benefit from
the techniques presented in this paper.

Figure 6 shows inference time, compila-
tion time and representation size in relation
to partitioning, to better understanding the
effects of our framework. Inference becomes
more difficult as we increase the number of
partitions, but the point to focus on is that
compilation time and representation size have
decreased significantly before inference time
becomes an issue. This is also confirmed by
the tested networks in Table 1, where infer-
ence cost has increased by only 46% on aver-
age, while the reduction in compilation cost is
many times greater. Since these results rely
on the quality of the partitioning, its further
improvement will have significant impact.

0

100000

200000

0 2 4 6 8 10 12 14 16

S
iz
e

Partitions

Representation

0

0.2

0.4

T
im

e

Compilation
0

0.3

0.6

T
im

e

Inference

Figure 6 Effects of partitioning on the
water network.

7. Conclusion

Weighted Model Counting has been proposed as a technique for exact probabilistic inference
that supports exploiting local structure (Dal and Lucas (2017); Nielsen et al. (2000); Choi
et al. (2013); Sang et al. (2005)). However, inference is performed on a representation that
is obtained through compilation. It is exactly where the limitation of WMC is revealed:
compilation can be very costly. In this paper we extend state-of-the-art compilers and model

11

Dal, Michels and Lucas

counters, such as SDD, CUDD and WPBDD, and the ACE and CACHET model counters
to tackle computation costs.

As the experimental evaluation demonstrates, our framework reveals several benefits:
(1) the compilation cost can be drastically reduced while using only a limited number
of partitions, (2) the representations obtained are much smaller, thus reducing resource
requirements, and (3) the time saved in this way can be invested in searching for even more
concise representations. As a consequence, with similar computation costs much bigger
Bayesian networks can be handled. The need for algorithms that can deal with very big
Bayesian networks is clearly visible in areas such as big-data analysis where lots of variables
need to be handled.

References

Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and complexity results for
#SAT and Bayesian inference. In Proceedings of the 44th Symposium on Foundations of Computer
Science, pages 340–351, 2003.

Beate Bollig. Restricted nondeterministic read-once branching programs and an exponential lower
bound for integer multiplication. Theoretical Informatics and Applications, 35:149–162, 2001.

Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is NP-complete. Trans-
actions on Computers, 45:993–1002, 1996.

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-specific indepen-
dence in Bayesian networks. In Proceedings of the Twelfth international conference on Uncertainty
in artificial intelligence, pages 115–123, 1996.

Andrés Cano, Manuel Gómez-Olmedo, Seraf́ın Moral, and Cora B Pérez-Ariza. Recursive probability
trees for Bayesian networks. In Conference of the Spanish Association for Artificial Intelligence,
pages 242–251, 2009.

Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling probabilistic graphical models using
Sentential Decision Diagrams. In European Conference on Symbolic and Quantitative Approaches
to Reasoning and Uncertainty, pages 121–132, 2013.

Paul Dagum and Michael Luby. Approximating probabilistic inference in Bayesian belief networks
is NP-hard. Artificial intelligence, 60:141–153, 1993.

Giso H. Dal and Peter J. F. Lucas. Weighted Positive Binary Decision Diagrams for exact proba-
bilistic inference. International Journal of Approximate Reasoning, 2017.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

Nir Friedman and Moises Goldszmidt. Learning Bayesian networks with local structure. In Learning
in graphical models, pages 421–459. 1998.

David Heckerman and John S Breese. Causal independence for probability assessment and inference
using Bayesian networks. Transactions on Systems, Man and Cybernetics, 26:826–831, 1996.

Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society, pages
157–224, 1988.

Thomas D Nielsen, Pierre-Henri Wuillemin, Finn V Jensen, and Uffe Kjærulff. Using ROBDDs
for inference in Bayesian networks with troubleshooting as an example. In Proceedings of the
Sixteenth conference on Uncertainty in artificial intelligence, pages 426–435, 2000.

Tian Sang, Paul Beame, and Henry A Kautz. Performing Bayesian inference by weighted model
counting. In AAAI, volume 5, pages 475–481, 2005.

12

