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Abstract Causal discovery is an increasingly important
method for data analysis in the field of medical research.
In this paper, we consider two challenges in causal discov-
ery that occur very often when working with medical data: a
mixture of discrete and continuous variables and a substan-
tial amount of missing values. To the best of our knowledge,
there are no methods that can handle both challenges at
the same time. In this paper, we develop a new method
that can handle these challenges based on the assumption
that data are missing at random and that continuous vari-
ables obey a non-paranormal distribution. We demonstrate
the validity of our approach for causal discovery on simulated
data as well as on two real-world data sets from a mone-
tary incentive delay task and a reversal learning task. Our
results help in the understanding of the etiology of attention-
deficit/hyperactivity disorder (ADHD).
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1 Introduction

In recent years, the use of causal discovery in the field of
medical research has become increasingly popular. Causal
discovery analyses all variables together and suggests causal
dependencies between variables, providing better insight into
the data. This approach has several advantages in comparison
with standard statistical techniques. First, causal discovery
provides an opportunity to learn causes and effects from
the observed data, without performing experiments that can
be costly and time-consuming. Second, it detects whether
the dependency between variables is direct or mediated
through other variables. Third, it can visualize the results
in the form of a graph that makes the results easier to inter-
pret.

Even though there are a variety of algorithms that can
learn the structure of the causal network for medical data,
there are still many challenges in this field of research. In
this paper, we discuss two of them. The first challenge is
dealing with data that contains a mixture of discrete and
continuous variables. Medical data often contain both dis-
crete and continuous variables, where continuous variables
are not necessarily normally distributed. The second chal-
lenge is dealing with incomplete data. In practice, some tests
are performed only for part of the patients, the quality of
some data is poor, participants drop out, etc.

Although there are methods that can handle mixed vari-
ables or missing values separately, to the best of our knowl-
edge there is no algorithm that can handle both challenges
simultaneously for directed graphical models. However,
there are such methods for undirected graphical models. In
Refs. [1,34,53], the authors propose different methods to
estimate the correlation matrix for data with missing values
and mixture variables, and based on this correlation matrix
learn the structure of the undirected graphical model.
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Algorithms that search for a structure of directed and undi-
rected graphical models have a lot in common. They both try
to find the optimal structure that provides the lowest com-
plexity and the best goodness of fit. The main difference is
that one model gives as output a directed graph and another
gives an undirected graph. In this paper, we propose to trans-
fer the ideas of structure learning for undirected graphical
models to causal discovery.

We propose a method that can handle missing values
and mixture variables based on the ideas for undirected
graphical models presented in Refs. [1,53]. This method
relies on two main assumptions. The first assumption is that
the part of the data with continuous variables obeys a so-
called non-paranormal distribution. For univariate monotone
functions f1, . . . , fd and a positive definite correlation
matrix �0 ∈ R

d×d , we say that a d-dimensional random
variable X = (X1, . . . , Xd)

T has a non-paranormal distrib-
ution X � NPNd( f, �0), if f (X) = ( f1(X1), . . . , fd(Xd))

� Nd(0, �0). We further assume functions f1, . . . , fd to be
strictly monotone enabling computational tractability of the
non-paranormal. A non-paranormal distribution implies that
observed variables havemonotonic relationships. This comes
from the fact that a Gaussian distribution implies linear,
hence monotonic relationships between the surrogate vari-
ables fi (Xi ). Moreover, the monotonic relationship from
surrogate Gaussian variables fi (Xi ) to observed variables
Xi does not change their ratings. That implies monotonic
relationships between observed variables as well. For most
real-world medical data, this is a reasonable assumption,
since medical data usually has a relatively small sample size
and non-monotonic dependencies, if present, are difficult to
detect. The second assumption is that data are missing at ran-
dom (MAR). This is also a reasonable assumption for many
medical studies where the missing data often occur due to
the fact that some experiments finish faster than others. As
a result, information about symptoms, age, gender is usually
present for all patients at the beginning of the study, while
information about genes or brain functioning takes years to
be collected and then may be missing for some subjects.

We propose a three-step algorithm: (1) Transform initial
data into a Gaussian distribution by transforming the data
first to the empirical distribution and then to Gaussian nor-
mal scores. This step deals with a mixture of discrete and
continuous variables with non-paranormal distribution. (2)
Use the expectation maximization (EM) algorithm to esti-
mate the correlation matrix for this data. This step deals with
missing values. (3) Apply a causal discovery algorithm to
learn the causal structure from the correlation matrix. In this
paper, we use the Bayesian Constraint-based Causal Dis-
covery (BCCD) algorithm [10] which is a state-of-the-art
algorithm for causal discovery. This step outputs the causal
graph and provides a reliability measure for each edge in the
graph.

In the first part of the algorithm, we use a copula transfor-
mation to estimate the correlation between variables. This
approach has been shown to work well for variables with
non-paranormal distributions [22,53]. In our case, we apply
the same approach for a mixture of discrete and continu-
ous variables and model the distribution of both discrete and
continuous variables using a Gaussian copula to obtain an
approximation of the correlationmatrix. This leads to a slight
underestimation of some correlations [26]. In case the focus
of the research is the causal directed acyclic graph (DAG)
from the observed variables, conditional independencies
involving discrete variables do not exactly correspond to con-
ditional independencies between their surrogate Gaussian
variables. In this paper, we focus on independencies in the
surrogate variables and assume that our data comes from a
causal DAG in the latent space. Following Abegaz and Wit
[1], i.e., it might not be necessary to use complex methods to
model discrete variables, since this would not result in a sig-
nificant increase in accuracy. Further in the simulation study,
we demonstrate that using this approximation our algorithm
manages to accurately estimate the causal structure.

We compare the first two steps of the proposed algorithm
with alternative methods. For the first step instead of trans-
forming data to a Gaussian we transform it to ranks. For the
second step instead of EM we use pairwise correlation, list-
wise deletion, andmean imputation. Although thesemethods
rely on a stronger assumption than EM that data are miss-
ing completely at random (MCAR), we choose them as a
common alternative to EM.We show that EMwith Gaussian
transformation performs better than the alternative methods,
when the amount of missing data is significant.We also show
that the strength of the dependencies in the data influences
the method that should be used to estimate the correlation
matrix for causal discovery. Thus, even though the meth-
ods that are considered in this paper to estimate correlation
matrices have similar performance for the undirected graph-
ical model, our analysis suggests that these methods have a
different effect on the accuracy of a causal discovery algo-
rithm. To test the validity of our conclusions that EM with a
Gaussian transformation performs better than alternatives for
directed graphical models, we repeat the same experiments
with the PC algorithm instead of BCCD.

As a prototypical example, we apply the proposed algo-
rithm to two data sets about attention-deficit/hyperactivity
disorder (ADHD). ADHD is a frequent and highly heritable
neuropsychiatric disorder, affecting 5–6% of children [41].
Symptoms persist into adulthood in up to 50% of the child-
hood cases [17]. ADHD is characterized by two types of
symptoms: hyperactivity/impulsivity and inattention, which
can occur separately or combined. Given the large number
of patients and long term impact of the disorder on patients
and health care system, ADHD is a serious financial burden
to society.
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Both ADHD data sets used in this paper have all features
of a typical medical data set since they describe causal rela-
tionships between various possible factors of the disease such
as genes, age, gender, and different types of symptoms and
behavioral characteristics. These data sets have several possi-
ble factors, which can influence symptoms and interact with
each other. The first data set describing a monetary incen-
tive delay task has a moderate sample size of 409 subjects
and approximately 10% of missing data. The second data set
describing a reversal task has a sample size of 271 subjects
and 0.3% of missing data. Both data sets have a mixture of
discrete and continuous variables.

These data sets are part of the NeuroIMAGE project
(see www.neuroimage.nl), whose goal is to learn cogni-
tive, neural (MRI, MRS), and genetic underpinnings of
ADHD. The first data set [51] investigates the role of the
genetic factors on the ADHD symptoms, and brain func-
tioning measured during the reward related task. The second
data set studies how problems with learning from rein-
forcement are associated with ADHD symptoms using a
probabilistic reversal learning task (PRL). Based on this
data, we build two causal models that provide deeper
understanding of the altered reward processing and reversal
learning in adolescents with ADHD than standard sta-
tistical tests. These models can help to understand the
mechanisms that drive ADHD and make treatment more
effective.

Parts of this work have been published as conference
papers [47,48]. In Ref. [47], we proposed an approach for
causal discovery from data with a mixture of discrete and
continuous variables. We focus on the use of the mutual
information for scoring structures and explore the quality
of our estimates for the mutual information through sim-
ulation studies. We applied our approach to real-world data
from the ADHD-200 competition. In the short paper [48], we
described the extension of the method in Ref. [47] to handle
missing values and demonstrate it on a data set involving a
monetary incentive delay (MID) task. In the current paper,
we describe our approach in much more detail and extend
our previous work in a number of directions: (1) We provide
an extensive simulation study where we compare our method
with alternative approaches; (2) we describe the application
of our method on a new data set involving a reversal learn-
ing task; and (3) extend its application on the MID task data
set with a detailed interpretation of the results provided by a
medical expert.

The rest of the paper is organized as follows. Section 2
describes background information about causal discovery
and graphical models. Section 3 describes algorithms for
structure learning. Section 4 explains the proposed method.
Section 5 presents the results of the experiments on simulated
data and ADHD data. Section 6 provides our conclusion and
future work.

2 Background

A Bayesian network is a pair (G,Θ) where G = (X,E) is a
DAGwith a set of nodesX representing domain variables and
a set of arcsE; θXi ⊂ Θ is a set of parameters representing the
conditional probability of variable Xi ⊂ X given its parents
Pai in a graph G. Using Bayesian networks, we can model
causal relationships between variables. In that case, an edge
A → B between variables represents a direct causal link from
A to B. This means that A influences the values of B, but not
the other way around.

Saying that two variables A and B are conditionally inde-
pendent given C, means that if we know C, learning Bwould
not change our belief in A. Two DAGs are called equiv-
alent to one another, if they entail the same conditional
(in)dependencies. All DAGs that are equivalent to a graph G
form an equivalence class of a graph G, where all members
are indistinguishable in terms of implied independencies. To
represent the members of this equivalence class, a different
type of structure is used, known as a partially directed acyclic
graph (PDAG).

The three main assumptions that are often used when
learning the structure of causal networks are the following
[49]:

1. Causal Markov Condition: each variable is independent
of its non-descendant conditioned on all its direct causes.

2. Faithfulness assumption: there are no independencies
between variables that are not implied by the Causal
Markov Condition.

3. Causal sufficiency assumption: there are no common
confounders of the observed variables in G that are not
members of the set.

In this paper, we do not rely on the causal sufficiency
assumption, i.e., we do allow for latent variables. One can
represent the structure of aBayesian networkwith latent vari-
ables using a so-called Maximal Ancestral Graph (MAG)
[43] on only the observed variables. In contrast to DAGs,
MAGs can also contain bi-directed X ↔ Y arcs (indicat-
ing that there is a common confounder) and undirected arcs
X − Y (meaning that there is a selection bias affecting X
and Y ). The equivalence class for MAGs can be represented
by a partial ancestral graph (PAG) [55]. Edge directions are
marked with “ − ” and “>” if the direction is the same for
all MAGs corresponding to the PAG and with “◦” otherwise.

3 Related study and motivation

In this section, we discuss existing methods for causal dis-
covery. Since there are no algorithms that can handle mixture
variables and missing data simultaneously, we consider the

123

www.neuroimage.nl


108 Int J Data Sci Anal (2017) 3:105–119

methods that can handle at least one of the challenges. Then
we discuss how both challenges are solved for undirected
graphical models and in Sect. 4 propose how can we transfer
these ideas to directed models.

3.1 Structure learning

Causal discovery requires structure learning for directed
graphical models. There are many methods that can be used
to learn the structure of directed graphical models. A broad
description of methods can be found in Ref. [11]. In general,
methods are divided into two approaches: constraint-based
and score-based. The constraint-based approach works with
statistical independence tests. First, this approach finds a
skeleton of a graph by starting from the complete graph and
excludes edges between variables that are conditionally inde-
pendent, given some other set of variables (possibly empty).
Second, the edges are oriented to arrive at an output graph.
The constraint-based approach learns the equivalence class
of DAGs and outputs a PDAG. Examples of the constraint-
based approach are the IC algorithm [38], PC-FCI [49], and
TC [39]. The score-based approach uses a scoring metric. It
measures the data goodness of fit given a particular graph
structure and accounts for the complexity of the network.
There aremany different scoringmetrics, where theBayesian
score [12] and the BIC score [46] are among the most com-
mon. The goal is to find the graph that has the highest score.
Unfortunately, this optimization problem is NP-hard, so dif-
ferent heuristics are used in practice. These methods are
divided in local search methods, such as greedy search [9],
greedy equivalence search [8], and global search methods,
such as simulated annealing [13] and genetic algorithms [31].

An advantage of the constraint-based approach is that it
does not have to rely on the causal sufficiency assumption,
which means that the algorithm can detect common causes
of the observed variables. A disadvantage of the constraint-
based approach is that it is sensitive to propagating mistakes
in the resulting graph. A standard approach makes use of
independence tests, which results for borderline independen-
cies/dependencies sometimes can be incorrect. The outcome
of learning a network can be sensitive to such errors. In par-
ticular, one such error can produce multiple errors in the
resulting graph. A set of conservative methods such as con-
servative PC (CPC) [42] and conservative FCI (CFCI) [50]
tackles the problem of lack of robustness, outperforming
standard constraint-based methods such as PC. An advan-
tage of the score-based approach is that it provides a measure
of reliability of inferred causal relations. This makes the
interpretation of the results easier and prevents incorrect cat-
egorical decisions. A main drawback of the approach is that
it relies on the causal sufficiency assumption and as a result
cannot detect latent confounders.

To deal with a mixture of discrete and continuous vari-
ables, several methods have been proposed for constraint-
based structure learning. Spirtes et al. [49] proposed to
use conditional independence tests based on partial cor-
relation. Harris and Drton [22] showed that substituting
Pearson correlation by Spearman correlation, the PC algo-
rithm is able to infer a correct network structure under the
assumption that data obey a Gaussian copula distribution.
Margaritis [35] developed a conditional independence test
that does not rely on the distribution of the variables, but
the test still involves discretization of the variables. Sev-
eral methods have been proposed for score-based methods
that can work with a mixture of discrete and continuous
variables. Geiger and Heckerman [21] proposed a closed-
form solution for the Bayesian score of a mixture of discrete
and continuous variables, but this solution only works in
case a number of assumptions are met. These assumptions
imply that the data are drawn from a conditional Gaussian
distribution and forbid structures in the network with a con-
tinuous variable having a discrete variable as a child. An
alternative method is described in Ref. [15] which uses a
multiple regression framework for scoring structures. How-
ever, the method is applicable only for time-series data.
Bach and Jordan [3] use Mercer kernels to estimate the
structure of causal models, but calculation of a Gramm
matrix requires significant computational costs (O(N 3),
where N is the sample size) and may be inefficient for
data sets with large sample sizes. Monti and Cooper [36]
use neural networks to represent the density function for a
mixture of discrete and continuous variables. Estimation of
the neural network parameters requires significant compu-
tational costs which makes this approach computationally
expensive.

To deal with missing values, several methods have been
proposed to learn the structure of the network in the presence
of missing values. Friedman [20] proposed a Structural EM
algorithm to estimate a Bayesian network that has been fur-
ther developed by Bernardo et al. [6]. The disadvantage of
the EM algorithm is that it can get stuck in a local minimum.
To prevent this, an evolutionary algorithm in combination
with MCMC was proposed in Ref. [44]. The limitation of
these algorithms is that they usually rely on the assumption
that data are either discrete or continuous Gaussian.

3.2 Undirected graphical models

Undirected graphical models build a graph where nodes
represent variables and edges describe conditional indepen-
dence relationships between the variables. The conditional
independence relationships are estimated using the precision
matrix (the inverse of a covariancematrix).Assuming that the
precision matrix is sparse, the sparseness constraint is incor-
porated in the estimation of the precision matrix. That results
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in an optimization problem [4] to find the inverse correlation
matrix Θ = �−1 with the best combination of goodness of
fit and sparsity:

max f (Θ) = log detΘ − tr(SΘ) − λ‖Θ‖1. (1)

Here tr denotes the matrix trace, det denotes determinant,
‖Θ‖1 denotes the L1 norm, S denotes the empirical covari-
ancematrix, and λ > 0 is a regularization parameter. In some
sense, score-based structure learning algorithms for directed
graphical models solve a similar optimization problem, but
produce a directed graph as output.

In recent years, considerable effort has been invested in
estimating the structure of undirected graphical models for
non-Gaussian data anddata containingmissing values [1,53].
The precision matrix can be estimated under the assump-
tion that data obey a non-paranormal distribution. In that
case, Pearson correlation, which relies on the assumption of
Gaussian data, is substituted by Spearman (Rho) rank corre-
lation (ρ) [1,34,53]. An adjustment to the final Spearman’s
rho correlation is applied in order tomake it close to the Pear-
son correlation matrix, when the data are indeed Gaussian
[28,30]:

S = 2 sin(πρ/6). (2)

The precision matrix can still be estimated when there are
missing values in the data. One can use pairwise analysis
and calculate pairwise correlation instead of complete case
correlation to estimate the matrix [1,53]. As a result, one can
keep asmuch data as possible. Another advantage of the pair-
wise correlation is that it does not introduce any bias to the
results in contrast to imputation methods. However, there is
no guarantee that the correlation matrix will be positive def-
inite when we use pairwise correlation for data with missing
values. In that case, a projection to the closest positive defi-
nite correlation matrix can be made [7,23].

Alternatively, the expectation maximization (EM) algo-
rithm can be used to estimate the values of the correlation
matrix� [14,33]. The EM algorithm requires Gaussian data,
so a copula transformation to Gaussian data can be used. The
EM algorithm guarantees that the matrix would be positive
definite, so no further adjustments are required.

Using Spearman pairwise correlation or the EM algorithm
in combination with an optimization subroutine like Glasso
orDoPing showed to be one of the bestmethods in the field of
undirected graphical models to estimate the structure of the
graph with data obeying a non-paranormal distribution and
missing values [53]. In this paper, we transfer these ideas to
learn the structure of a causal graph and compare different
methods using simulated and real-world data.

4 Proposed method

In this section, we propose a causal discovery algorithm that
can deal with both a mixture of discrete and continuous vari-
ables as well as missing data. In the first two steps of this
algorithm, we estimate the correlation matrix, when the data
has mixture variables and missing data, based on the ideas
described in Sect. 3. In the third step, we use this correla-
tion matrix as an input into a causal discovery algorithm to
infer the causal structure. We use the BCCD algorithm for
this purpose, one of the state-of-the-art algorithms in causal
discovery. Claassen and Heskes [10] showed that BCCD out-
performs reference algorithms in the field, such as FCI and
Conservative PC. Moreover, it provides an indication of the
reliability of the causal links that makes it easier to interpret
the results and compare alternative models. The advantage
of the BCCD algorithm is that it combines the strength of
constraint-based and score-based approaches. We rely on the
assumption that data are missing at random and that contin-
uous variables obey a non-paranormal distribution.

We propose the following algorithm:

Step 1: Mixture of discrete and continuous variables

To deal with data sets that contain a mixture of discrete
and continuous variables, we propose to use a Gaussian
copula. For each variable Xi in the data set, we estimate
the rescaled empirical distribution

F̂i (x) = 1

n + 1

n∑

j=1

I{Xi, j < x}, (3)

where I is an indicator function and then transform the
data into Gaussian normal scores

X̂i = Φ̂−1
i (F̂(Xi )). (4)

In this step missing values are ignored.
Step 2: Correlation matrix with missing data

The next step is to estimate the correlation between
the variables in the model. This correlation matrix will
be used in the next steps, where we will estimate the
causal structure of the graph. New variables now have a
Gaussian distribution, so we can use Pearson correlation
to estimate dependencies between variables. Since our
data has missing values, we propose to first use the EM
algorithm to estimate the correlation matrix, since this
algorithm provides an unbiased estimate of parameters
and their standard error [14].

The EMalgorithm searches for theMaximumLikelihood
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Estimate (MLE) of the marginal likelihood by iteratively
applying the following two steps:

1. E-step: Estimate the sufficient statistics;
2. M-step: Re-estimate the covariance matrix using

the sufficient statistics from the previous step. Re-
estimate missing values. The algorithm iterates until
convergence.

The output of EM is a covariance matrix that should be
normalized to have unit variance.
Step 3: Apply BCCD

The correlation matrix is used in the BCCD algorithm
to estimate the causal structure of the graph. We here
describe only the basic idea of the BCCD algorithm. A
more detailed description can be found in Ref. [10]. The
BCCD algorithm contains two main steps:

Step 3.1 Start with a fully connected graph and perform
adjacency search, estimating the reliability of causal rela-
tions, for example, X → Y . If a causal relation declares
that variables are conditionally independent with a relia-
bility higher than a predefined threshold, delete an edge
from the graph between these variables. To estimate the
reliability of the causal statement, we have to do the fol-
lowing substeps repeatedly:

(a) First we estimate the mutual information, using the
correlation matrix � that we get as an output from
Step 2. We propose to use the following formula:

I (Xi , XPai ) = −1

2
log

|�i,Pai |
| �Pai | , (5)

where XPai are the parents of node i in DAG G, �Pai
is a correlationmatrix between the parents of variable
Xi , and�i,Pai is a correlationmatrix between variable
Xi and its parents.

(b) Knowing the value of mutual information, we can
estimate the Bayesian Information Criterion (BIC)
for data D that can then be used to compare scores
of different DAGs (G). The BIC score is decomposed
into the sum of two components, the mutual infor-
mation I (Xi , XPai ) estimated in the previous substep
and Dim[G] the number of parameters necessary to
estimate the model.

BICscore(D|G) = M
n∑

i=1

I (Xi , XPai )

− logM

2
Dim[G], (6)

where n is the number of variables, and M is the sam-
ple size. The first component measures the goodness

of fit, and the second penalizes the complexity of the
model.

(c) To estimate the reliability measure, we need to esti-
mate the marginal likelihood p(D|G). We propose to
use BIC, which approximates the logarithm of the
marginal likelihood:

log p(D|G) = BICscore + O(1). (7)

To get the probability p(D|G), we should calculate
(7) for all possible graphs for this subset of variables
and then normalize it.

(d) Now we can estimate the reliability of the causal
statement L , e.g., L : ‘X → Y ’. It gives a conserv-
ative estimate of the probability of a causal relation.
We estimate the reliability measure using a Bayesian
score:

p(L|D) =
∑

M∈M(L) p(D|M)p(M)
∑

M∈M p(D|M)p(M)
, (8)

where p(D|M) denotes the probability of data D
given structureM, p(M) represents the prior distrib-
ution over structures, andM(L) is the set of structures
containing the relation L . In this equation,we approx-
imate the probability p(D|M) by p(D|G), which
was calculated in the previous substep. Equation (8)
also requires to set the prior distribution for p(M).
Claassen and Heskes [10] propose to use a uniform
prior.

Step 3.2 Rank all causal relations in decreasing order
of reliability and orient edges in the graph starting
from the most reliable relations. If there is a conflict,
pick the causal relation that has a higher reliability.

To estimate Eq. (8) in Step 3.1, the algorithm requires cal-
culating the marginal likelihood over all possible graphs for
each causal relation that we infer. For speed and efficiency
of the algorithm, the set of possible graphs is limited to the
graphs with at most five vertices, which gives a list of at
most 29,281 DAGs per set of five variables [10] to reduce
the computational complexity. In theory, limiting the num-
ber of vertices to five may lead to a loss of information. In
practice, however, the accuracy of the BCCD algorithm is
hardly affected and it still outperforms standard algorithms
that perform conditional independence tests for more than
five variables [10].

In our method, we assume that each observed variable has
a corresponding latent, surrogate variable, with a monotonic
relationship between the two. The latent variable can thus
be seen as a surrogate value, representing the exact same
concept as the corresponding observed variable. The method
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infers and then depicts in the output graph the causal structure
between these surrogate variables.

Each step in the proposed algorithm has several possible
alternative solutions. Based on the papers about undirected
graphical models [1,53], an alternative for Step 1 is to trans-
form data to ranks and use Spearman to deal with mixture
variables. To deal with missing variables in Step 2, we use
either pairwise correlation, mean imputation, or list-wise
deletion to deal with missing values. In case of pairwise cor-
relation, there are no guarantees that the correlation matrix
will be positive definite and if not it should be projected to
the closest positive definite matrix. Calculating Spearman
pairwise correlation we have two alternatives: to apply the
transformation proposed in Eq. (2) or not to apply.

An alternative to Step 3 could be any score-based causal
discovery algorithm that can use a correlation matrix as an
input. In this paper, we focus on the alternatives for Steps 1
and 2 and would like to learn which approach is the best for
directed graphical models. Thus, we do not try to find the
best alternative for Step 3, but rather check whether the best
approach for Step 1 and 2 is the samewhen we use a different
causal discovery algorithm. In order to do so, we compare
our results with the PC algorithm.

5 Experimental results

5.1 Simulation study

To estimate the accuracy of the causal discovery for different
alternatives of Steps 1 and 2 of the algorithm discussed in the
previous section, we made a simulation study. We chose the
Waste Incinerator Network [32] which contains a mixture
of discrete and continuous variables. The Waste Incinera-
tor Network describes the emission from a waste incinerator
depending on thefilter efficiency,waste type, burning regime,
and other factors. The network contains nine variables that
are connected by ten arcs as can be seen in Fig. 1.

The original version of the network contains continuous
Gaussian variables. To make these variables nonnormal, we

applied a monotonic transformation (X3). We considered the
Waste Incinerator Network when the correlation between
variables is extreme-high (the correlation matrix is close to
singular) andmedium (the parameters that were used are pro-
vided in supplementary material). We generated data with
three levels of missing data (0, 5, and 30%) and four sample
sizes: 100, 250, 500, and 1000. We repeated our experiments
50 times. Performance was measured by the PAG accuracy
measure that evaluates how many edges were oriented cor-
rectly in the output PAGcomparedwith the ground-truth PAG
(Fig. 1b). We also estimated the correctness of the skeleton
by calculating precision and recall metrics, where the former
estimates the number of edges inferred correctly to the total
number of inferred edges and the latter estimates the num-
ber of edges inferred correctly to the number of edges in the
ground-truth graph (Fig. 1).

We investigate the effect of different approaches to esti-
mate the correlation matrix (described in Steps 1 and 2 in
Sect. 4) on the accuracy of the causal discovery algorithm.
We consider the following alternatives:

1. Pearson correlation with EM. (EM)
2. Spearman correlation with mean imputation. (Spearman

mean)
3. Spearman correlation with list-wise deletion. (Spearman

list-wise)
4. Pairwise Spearman correlation. In this approach, we do

not make an adjustment of the Spearman correlation
based on (4). (Spearman not adjusted)

5. Pairwise Spearman correlation with adjustment. In this
approach, we do make an adjustment of the Spearman
correlation based on (4). (Spearman pairwise)

If the obtained matrix is not positive definite, it is projected
to the closest positive definite matrix [24]. We repeat these
tests for two different causal discovery algorithms: BCCD
and PC.

When there is no missing data, Spearman mean, Spear-
man list-wise, and Spearman pairwise provide the same
results. Thus,we compare only three alternatives: EM,Spear-

Fig. 1 Waste Incinerator Network represented as a DAG, and b PAG. The node names are abbreviated as follows: Burning regime (B), Filter
state (F), Waste type (W ), CO2 concentration (C), Filter efficiency (E), Metal in waste (MW ), Light penetrability (L), Dust emission (D), Metals
emission (ME)
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Fig. 2 The accuracy of the
BCCD algorithm (PAG
accuracy, precision, and recall)
for the Waste Incinerator
Network for data with medium
and high correlation when there
are no missing values
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man, Spearman adjusted. Figure 2 represents the results
of BCCD for two cases: when the data has a medium
correlation and high correlation. For medium correlation,
Spearman adjusted performs similarly with the other two
methods, but for high correlation it performs significantly
worse than Spearman not adjusted and EM. The factor
that is causing this difference is the ill-defined determinant
of the correlation matrix which is close to zero when the
correlation is high. Adjustment of the correlation matrix
using (4) increases the correlations even more, which results
in a non-positive definite correlation matrix and loss of
conditional independencies between variables compressed
in the correlation matrix. This results in many incorrect
edges and a low PAG accuracy. Thus, when the correlation
between variables is high, adjusting the Spearman corre-
lation may lead to significantly worse results. Based on
this conclusion, we did not consider Spearman adjusted
for tests with missing values, since it already showed sig-
nificantly worse performance compared to Spearman not
adjusted.

Figure 3 shows the results of BCCD when the data have
a low (5%) and high (30%) percentage of missing values.
When percentage of missing values is low (5%) the differ-
ences betweenEM, Spearmanmean, Spearman list-wise, and
Spearman pairwise are not significant. When the percentage
of missing values is high (30%), EM performs significantly
better than Spearman for both medium and high correla-
tion. One of the main factors that leads to this difference
in performance between EM and pairwise correlation is a

non-positive definite correlation matrix with a high number
of missing values. The advantage of the EM algorithm in
that case is that it outputs a positive definite matrix. Even
though we projected the Spearman correlation matrix to a
positive definite correlation matrix, simulation tests show
that EM provides more accurate results. When the percent-
age of missing values is high, mean imputation leads to a
decrease in variance which results in lower accuracy. As
expected, Spearman list-wise performs worse than all other
methods due to significant loss of information when esti-
mating the correlation when the amount of missing data are
high.

We repeated the same experiments with PC and obtained
similar patterns, see Fig. 4. When 5% of the data is missing,
no significant difference between the methods is observed.
When 30% of the data is missing, EM gives significantly
better PAG accuracy. Although BCCD is a more advanced
algorithm than PC, it provides lower PAG accuracy in these
experiments. It happens because PC infers the directions
based on the assumption that there are no unobserved com-
mon causes and no selection bias, while BCCD does not
rely on these assumptions. Since waste incinerator network
does not contain unobserved common causes and selection,
PC can infer the correct structure of the network more eas-
ily than BCCD. For both BCCD and PC, increasing the
sample size improves recall and PAG accuracy, while it
does not help to improve the precision. When sample size
becomes large, our method starts to detect more spurious
edges leading to a decrease in precision in the simulation
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Fig. 3 The accuracy of the
BCCD algorithm (PAG
accuracy, precision, and recall)
for the Waste Incinerator
Network for data with medium
and high correlation at two
levels of missing values: 5%
missing, 30% missing
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studies. An increase in the number of spurious edges with
an increase in sample size is a common problem in struc-
ture learning, since with a high sample size even very small
correlations between variables become significant. In this
case, we are not talking about ’spurious’ correlations (which
would be resolved with more data), but about real but weak
correlations that are often present in complex, real-world sys-
tems, but that are overlooked (not detected) in small data
sets.

We compare our results with the results obtained for undi-
rected graphical models in Ref. [1,53]. The two main results
for undirected graphical models are: (1) Spearman and EM
both perform well, while EM performs slightly better. (2)
Making the projection for the correlation matrix to the clos-
est positive definite matrix improves the results. The main
results that we obtained for directed graphical models are:
(1) EM performs significantly better than Spearman with

projection for data with a high percentage of missing val-
ues and a high correlation between variables. (2) Working
with directed graphical models one should be careful in
applying the adjustment of the Spearman correlation. This
adjustment may destroy the positive definiteness property of
the matrix even when there are no missing values in the data.
The difference in results between undirected and directed
graphical models can arise because undirected graphical
models are typically inferred under sparseness constraints.
Optimizing the correlation matrix under sparseness con-
straints decreases the number of spurious dependencies that
might otherwise arise due to an ill conditioned or even non-
positive definite correlation matrix. We do not have a similar
type of regularization to estimate the mutual information
in (5) and (6), which then may explain the larger differ-
ence in performance between EM, Spearman, and Spearman
adjusted.
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Fig. 4 The accuracy of the PC
algorithm (PAG accuracy,
precision, and recall) for the
Waste Incinerator Network for
data with medium and high
correlation at two levels of
missing values: 5% missing,
30% missing
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5.2 ADHD data

We have applied the BCCD algorithm with EM to two data
sets representing two different ADHD studies performed as
a part of the NeuroIMAGE study.

5.2.1 MID tasks study

The first study [51] investigated the brain response during
reward anticipation and receipt with a monetary incentive
delay (MID) task in a large sample of adolescents and young
adults with ADHD, their unaffected siblings and healthy
controls. All subjects participated in cognitive testing and
neuroimaging. The brain activation was measured in ventral
striatum (VS) and orbital-frontal cortex (OFC) brain areas
during the reward anticipation and receipt [52]. The data set

contained 409 participants: 189 probands with ADHD, 104
unaffected siblings, and 116 age-matched controls. Since the
presence of the unaffected siblings can blur the effect of the
genes, we did not include them in our study and consider
only ADHD patients and healthy controls. Approximately
10% of data is missing for this study. The main reason for
the presence of missing values in this data set was that part
of the experiments was very time-consuming and as a result
not all the results were available yet, leading to missing val-
ues in the data set. Thus, we may assume for this data set
that data are missing completely at random. Scatter plots did
not reveal any non-monotonic dependencies, supporting our
hypothesis of monotonic dependencies.

Using BCCD, we wanted to infer the endophenotipic
model [19] that explains the relationships between genes,
brain functioning, behaviors, and disease symptoms. To
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Fig. 5 The causal graph
representing causal relationships
between variables for the MID
task ADHD data set. The graph
represents a PAG, where edge
directions are marked with “ − ”
and “>” for invariant edge
directions and with “◦” for
non-invariant edge directions.
The reliability of an edge
between two variables is
depicted with a percentage value
near each edge

apply causal discovery to this data set, domain experts
selected 12 variables. These variables include general char-
acteristics, genetic factors, comorbid disorders, symptoms,
and results of the MID task experiments:

1. Gender (male/female).
2. Age.
3. IQ.
4. DAT1 risk gene (present/not present).
5. NOS1 risk gene (present/not present).
6. Inattention symptoms (score assessed by KSADS and

CPRS-R:L).
7. Hyperactivity/impulsivity symptoms (score assessed by

KSADS and CPRS-R:L).
8. Aggression [(presence/absence of Oppositional Defiant

Disorder (ODD) or Conduct disorder (CD)].
9. Brain activation in OFC during receipt (Receipt OFC).

10. Brain activation in VS during receipt (Receipt VS).
11. Brain activation in OFC during anticipation (Anticipa-

tion OFC).
12. Reaction time difference (the difference in reaction time

with and without a reward).

The initial data set contained two different estimates of the
ADHD symptoms: one estimated by parents and another one
estimated by a psychiatrist. Since these are highly correlated,
it makes no sense to include both. We decided to keep the
parent scores, because an initial analysis revealed slightly
more variation and slightly stronger correlationwith the other
variables. These symptom scores represent the quantiles in
the population adjusted by age and gender. We readjusted
these scores to be able to see the explicit effect of gender.

Partially due to the small sample size, theBCCDalgorithm
inferred only the skeleton of the network, but not the direction

of the edges for the resulting network. However, including
prior knowledge about the domain that no variable in the net-
work can cause gender, and the endophenotypic assumption
from Ref. [19] that symptoms are the consequence of prob-
lems with brain functioning, BCCD inferred the direction of
several edges.

The causal network learned from the data is presented in
Fig. 5. The figure indicates network edges with an estimated
link of 50% or above. The resulting network structure pro-
vides an endophenotypic model that connects genes, brain
functioning, and symptoms together. The causal model sug-
gests association of genes with brain activation during the
monetary incentive delay task. This model confirms several
causal pathways that were previously presented in other stud-
ies and suggests new endophenotypic pathways.

Our causal model suggests that NOS1 is associated with
brain activation in OFC during reward receipt and DAT1
with brain activation during reward anticipation. The effect
of genes on brain functioning was also claimed in other
studies [16,27]. The model proposes that the reaction time
depends on the age of the subject and his/her level of inatten-
tion. In Ref. [25], a similar conclusion was drawn about the
increase in reaction time up to early adulthood. The level of
inattention symptoms depends on the gender of the subject.
This statement is confirmed by different studies in the field of
ADHD [5]. The level of hyperactivity/impulsivity depends
on the level of inattention and on the problems with brain
activation in MID task in VS. The effect of inattention on
hyperactivity/impulsivity was also found in Ref. [54]. The
level of aggression is associated with the level of IQ and
inattention level.

Most studies focus on association between symptoms
and reward anticipation rather than between symptoms and
reward receipt and several studies report a link between these
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Fig. 6 The causal graph
representing causal relationships
between variables for the
reversal task ADHD data set.
The graph represents a PAG,
where edge directions are
marked with “−” and “>” for
invariant edge directions and
with “◦” for non-invariant edge
directions. The reliability of an
edge between two variables is
depicted with a percentage value
near each edge
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two variables [40,45], whereas others do not [37]. The causal
model inferred in our study suggests a causal path from
reward receipt to hyperactivity/impulsivity symptoms and no
clear link between reward anticipation and symptoms.More-
over, the causal model provides computational evidence for
new causal association between genes, brain functioning, and
symptoms, from NOS1 to hyperactivity/impulsivity symp-
toms through brain functioning during receipt. The model
inferred in this study should be treated with care, but can
suggest further studies, zooming in on some of the pathways
found through this analysis.

5.2.2 Reversal task study

The second study investigated the behavioral response dur-
ing a probabilistic reversal learning task (PRL). With the
PRL, one can learn whether participants are able to adapt to
a changing situation, whether they are able to learn a (new)
rule, and possiblywhether participants are sensitive to reward
and punishment. The participants of the reversal task study
partially overlap with the participants from the MID task
study. However, since the MID task experiments were per-
formed several years before the reversal task study, in the
reversal task study the participants are older.

We appliedBCCD to investigate the relationships between
ADHD symptoms and problems with reversal behavior.
Based on the domain knowledge experts selected nine vari-
ables that are associated with ADHD and may influence the
outcome of the reversal task:

1. Gender (male/female).
2. Age.
3. IQ.
4. Inattention symptoms (score assessed by KSADS and

CPRS-R:L).
5. Hyperactivity/impulsivity symptoms (score assessed by

KSADS and CPRS-R:L).

6. Win-stay score (percentage of trials in which participants
chose the same stimulus after a win).

7. Lose-shift score (percentage of trials in which partici-
pants chose the other stimulus after a loss).

8. Preservative error score (the amount of errors made after
reversal that were related to picking the previous stimu-
lus).

9. Medication status (naive/not naive).

To infer a more accurate causal network, we included in
themodel the prior knowledge that nothing can cause gender.

The causal network inferred by BCCD is presented in
Fig. 6. This network suggests the effect of age on subject’s IQ
andwhether themedicationwas prescribed or not.Moreover,
age is associated with gender in this model, which happens
due to age/gender unbalance in the sample. In contrast to the
causal model in theMID task (Fig. 5), this causal model does
not find any link between gender and symptoms. A possible
explanation can be the observation [29] that gender unbal-
ance vanishes when ADHD patients get older and become
adults. Since in the reversal task study subjects are approxi-
mately 3.6 years older than in the MID task study, this might
explain why in reversal task study there is no effect of gender
on symptoms.

Analysis of the causal links between symptoms PRL
experiment outcomes suggest that IQ and hyperactivity/
impulsivity are associated with variables related to rever-
sal learning. Subjects with a lower IQ and higher level of
hyperactivity/impulsivity have a higher percentage of lose-
shift responses and a lower percentage of win-stay responses,
suggesting sensitivity for punishment but not for reward in
participants with more hyperactivity/impulsivity symptoms.
Although we did not find a direct association between symp-
toms and age, older participants with ADHD tend to have
less hyperactivity/impulsivity symptoms than younger par-
ticipants [18], possibly relating age to performance in the
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PRL.Probably a samplewith higher age differences is needed
to be able to infer such a pattern from the data.

The association of IQ with both win-stay and lose-shift
may be related to the difficulty of the task in general. Partic-
ipants with a lower IQ have more problems with performing
the task but are not specifically more sensitive to punishment
than reward. Additionally, with the PRL one can investigate
how well people can adapt to a changing rule, which may be
difficult for subjectswithADHD [2]. Although this is the first
study of causal analysis with ADHD and PRL performance,
it shows promising possibilities for future research.

6 Discussion and conclusions

The simulation study shows that the EM algorithm performs
better than Spearman with pairwise correlation, mean impu-
tation, and list-wise deletion for directed graphical models
when the percentage of missing values is high, while provid-
ing similar results when the percentage is low. Comparing
EM with pairwise Spearman, these results can be explained
by the fact that the correlation matrix can become non-
positive definite when calculating pairwise correlation with
missing values. This leads to an incorrect estimate of the
determinant. Estimation of the correlation matrix using the
EM algorithm outputs a positive definite matrix that results
in a better accuracy of the algorithm. Thus the EM with
Gaussian transformation proposed in this paper performs bet-
ter than the Spearman pairwise correlation method proposed
in Ref. [53] for causal discovery. EM outperforms mean
imputation due to a more sophisticated method to impute
missing values that does not reduce variance. Bad perfor-
mance of list-wise deletion when the percentage of missing
values is high is logical, since main part of the data is not
used when applying this method. A simulation study using
the PC algorithm instead of BCCD confirmed these results.
Although the EM algorithm is computationally more expen-
sive than alternative methods described in the paper such
as pairwise correlation, it should be calculated only once.
For a data set of 15 variables, it does not take longer than a
minute.

Where pairwise and list-wise deletion correlation esti-
mation that rely on the assumption that data are missing
completely at random (MCAR), EM assumes that data are
“just” missing at random (MAR). This assumption applies
more often in practice and thus increases the range of data
sets for which it can be used.

The simulation study also shows that adjustment of the
Spearman correlation when the correlation is high can
decrease the accuracy of the causal discovery algorithm.
The determinant of the correlation matrix is close to zero

when the correlation between variables is high. When apply-
ing the adjustment of the correlation matrix, the correlation
increases even more which can again result in a non-positive
defined matrix determinant. For medium correlation, Spear-
man adjusted and Spearman not adjusted show similar
accuracy. Thus, we can conclude that for estimating mutual
information it is better not to adjust the Spearman correla-
tion.

Using the BCCD algorithm, we inferred an endopheno-
typic model of ADHD during the MID task. The resulting
model explains the effect of genes on brain functioning, the
effect of brain functioning and general factors on disease
symptoms, and an interaction between these symptoms. This
model confirms previous findings in the literature and pro-
poses new causal links between variables. The model shows
evidence for receipt and against anticipation endopheno-
types and highlights the need to extend genetic research on
this less expected endophenotype. In this sense, this study
suggests promising new pathways for genetic research in
ADHD that need to be confirmed by genetic imaging stud-
ies.

BCCDinferred amodel explaining the interactionbetween
symptoms and problems with reversal learning measured
during the PRL task. This model suggests that the main fac-
tors that influenced the outcome of the experiments were
hyperactivity/impulsivity, IQ, and medication. These results
provide a new insight into the reversal learning problems and
can improve its treatment.
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