PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/141220

Please be advised that this information was generated on 2020-11-28 and may be subject to change.

A p-adic approach to the Jacobian Conjecture

Arno van den Essen^{a*} and Richard J. Lipton^b

October 16, 2014

^a Department of Mathematics, Radboud University Nijmegen, The Netherlands
^b Georgia Tech, College of Computing, Atlanta GA 30332, USA

Abstract

It is shown that the Jacobian Conjecture (in all dimensions) is equivalent to the following statement: for almost all prime numbers pand each Keller map $F \in \mathbb{Z}_p[X]^n$ (i.e. $\det JF = 1$), the induced map $\overline{F} : \mathbb{F}_p^n \to \mathbb{F}_p^n$ is not the zero map.

MSC:14R15;13J15 keywords: Jacobian Conjecture, *p*-adic integers

Introduction

The Jacobian conjecture asserts that every polynomial map $f \in \mathbb{C}[X]^n$ with det Jf = 1 is invertible, i.e. has an inverse map in $\mathbb{C}[X]^n$. Since the formulation of this conjecture in 1939 by Keller ([Ke]), many equivalent formulations of it have been given (see [BCW] or [Es]). The aim of this paper is to give another new, surprising, equivalent description of this conjecture which is based on properties of polynomial maps over the *p*-adic integers.

To describe this result let $F = (F_1, \dots, F_n)$ be a polynomial map with coefficients in the *p*-adic integers \mathbb{Z}_p . By reducing the coefficients of F mod $p\mathbb{Z}_p$ we obtain a polynomial map $\overline{F} : \mathbb{F}_p^n \to \mathbb{F}_p^n$. The main result of this paper states that the Jacobian Conjecture is equivalent to the following statement: if p is a prime number and $F \in \mathbb{Z}_p[X]^n$ a polynomial map with det JF = 1,

^{*}corresponding author: essen@math.ru.nl

then \overline{F} is not the zero-map. In fact, if the Jacobian Conjecture is true it follows that \overline{F} is a bijection, namely it follows from [Es], 1.1.12 that the Jacobian Conjecture also holds for polynomial maps with coefficients in \mathbb{Z}_p . So F has an inverse G in $\mathbb{Z}_p[X]^n$. Reducing the equation $F \circ G = X \mod p\mathbb{Z}_p$ we obtain that \overline{F} is a bijection with inverse \overline{G} .

Transitivity

In this section we investigate 2-transitivity of $Aut_R R^{[n]}$ on R^n , where R is a commutative ring, i.e. we investigate under which conditions on R any two points $a \neq b$ of R^n can be send to any two points $c \neq d$ of R^n by an automorphism of $R^{[n]}$.

Let a, b be two different elements of \mathbb{R}^n and c, d another such pair. A morphism from $V = \{a, b\}$ to $W = \{c, d\}$ is a polynomial map $F = (f_1, \dots, f_n) \in \mathbb{R}[X]^n$ such that F(a) = c and F(b) = d. We say that V and W are isomorphic if there exists a morphism F from V to W and a morphism G from W to V such that $G \circ F = 1_V$ and $F \circ G = 1_W$. Our first aim is to investigate under what conditions two sets V and W are isomorphic. We use the notations as above and introduce one more notation: if $a \in \mathbb{R}^n$ we denote by (a) the ideal in R generated by the a_i , i.e. $(a) = \sum_i \mathbb{R}a_i$ and if $(a) = \mathbb{R}$ then a is called unimodular.

Proposition 1. *i)* There exists a morphism $V \to W$ if and only if $(d-c) \subseteq (b-a)$.

ii) V and W are isomorphic if and only if (d-c) = (b-a).

Proof. i) (\Rightarrow) Let F be a morphism sending a to c and b to d. Then $G := (X-c) \circ F$ is a morphism sending a to 0 and b to d-c. Let $G = (g_1, \dots, g_n)$. Then $g_i(a) = 0$ implies that $g_i = p_{i1}(X)(X_1 - a_1) + \dots + p_{in}(X)(X_n - a_n)$, for some $p_{ij}(X)$ in R[X]. Since G(b) = d - c, we deduce that

$$d_i - c_i = p_{i1}(b)(b_1 - a_1) + \dots + p_{in}(b)(b_n - a_n)$$
, for all *i*

 (\Leftarrow) Since $(d-c) \subseteq (b-a)$, there exist $p_{ij} \in R$ such that

$$d_i - c_i = p_{i1}(b_1 - a_1) + \dots + p_{in}(b_n - a_n)$$
, for all *i*

Let $G = (g_1, \dots, g_n)$, where $g_i = p_{i1}(X_1 - a_1) + \dots + p_{in}(X_n - a_n)$. Then G(a) = 0 and G(b) = d - c. Now put $F = (X + c) \circ G$. Then F(a) = c

and F(b) = d. So F is a morphism from V to W. This proves i). Finally ii) follows readily from i).

In the next theorem we assume that R is a PID. We will show that in case V and W are isomorphic, the isomorphism can be extended to an automorphism of R^n , i.e. there exists an $F \in Aut_R R^{[n]}$ such that F(a) = cand F(b) = d.

Theorem 2. If $\{a, b\}$ and $\{c, d\}$ are isomorphic, then there exists an affine automorphism f of $R^{[n]}$ with det Jf = 1 such that f(a) = c and f(b) = d.

Proof. Since R is a PID, there exists $g \in R$ such that (b - a) = Rg. Write $b_i - a_i = gv_i$, for some $v_i \in R$. Then $v := (v_1, \dots, v_n)$ is a unimodular row. Since R is a PID this implies that there exists a matrix $B \in Sl_n(R)$ which first column equals v^t . Let A be the inverse of B and $(r_{i1}, r_{i2}, \dots, r_{in})$ denote the *i*-th row of A. Define

$$F_i := r_{i1}(X_1 - a_1) + \dots + r_{in}(X_n - a_n), \text{ for all } 1 \le i \le n$$

Then $F = (F_1, \dots, F_n)$ satisfies F(a) = 0. Now we compute F(b). Let $1 \le i \le n$. Then

$$F_i(b) = r_{i1}(b_1 - a_1) + \dots + r_{in}(b_n - a_n) = g(r_{i1}v_1 + \dots + r_{in}v_n)$$

But this element is exactly g times the product of the *i*-th row of A and the first column of B. Since $AB = I_n$ this product equals 0 if i > 1, i.e. $F_i(b) = 0$ if i > 1 and the product equals g if i = 1 i.e. $F_1(b) = g$. Clearly F is an affine automorphism with det JF = 1 sending a to 0 and b to ge_1 , where e_1 is the first unit standard basis vector. Since (d - c) = (b - a) = Rg we can apply the same argument to find an affine automorphism G with det JG = 1 such that G(c) = 0 and $G(d) = ge_1$. Then one readily verifies that $f := G^{-1} \circ F$ is an affine automorphism with det Jf = 1 such that f(a) = c and f(b) = d.

The unimodular conjecture

A map $F \in R[X]^n$ with det JF = 1 will be called a *Keller map*.

Unimodular Conjecture. Let R be a commutative ring contained in a \mathbb{Q} -algebra. If F is a Keller map then F(b) is unimodular for some $b \in \mathbb{R}^n$.

Below the unimodular conjecture will be used as follows:

Proposition 3. Assume that the unimodular conjecture holds for R, then for every Keller map F and every $a \in \mathbb{R}^n$ there exists $d \in \mathbb{R}^n$ such that F(d) - F(a) is unimodular.

Proof. Put G(X) = F(X + a) - F(a). Then G is a Keller map, so by the unimodular conjecture there exists $b \in \mathbb{R}^n$ such that G(b) is unimodular, i.e. such that F(b + a) - F(a) is unimodular. Then take d = b + a.

Theorem 4. Let R be a PID and assume that the unimodular conjecture holds for R. If there exists a Keller map such that $F : \mathbb{R}^n \to \mathbb{R}^n$ is not injective, then for every $m \ge 2$ there exists a Keller map which has a fiber containing at least m elements.

Proof. i) It suffices to show that if F is a Keller map such that $F(a_1) = \cdots = F(a_m) = c$, where $m \ge 2$ and all a_i are different, then there exists a Keller map G such that $\#G^{-1}(c) \ge m+1$.

ii) Since $F(a_1) = F(a_2)$ it follows from [CD] or [Es], lemma 10.3.11 ii) that $(a_2 - a_1) = R$. By proposition 3 there exists d, such that $(F(d) - F(a_1)) = R$. So $(F(d) - F(a_1)) = (a_2 - a_1)$. By proposition 1, using that $c = F(a_1)$, this means that $\{F(d), c\}$ is isomorphic to $\{a_2, a_1\}$. By theorem 2 this implies that there exists a Keller map T such that $T(F(d)) = a_2$ and $T(c) = a_1$. iii) Now put $G = F \circ T \circ F$. Then clearly G is a Keller map. Furthermore

$$G(a_i) = F \circ T(F(a_i)) = F(T(c)) = F(a_1) = c, \text{ for all } 1 \le i \le m$$

 $G(d) = F \circ T(F(d)) = F(T(F(d))) = F(a_2) = c$

Finally observe that d is different from all a_i , since $F(a_i) = c$ for each i and $(F(d) - F(a_1)) = R$. So $G^{-1}(c)$ contains at least m + 1 elements.

Relations with the Jacobian Conjecture

In this section we show that the Jacobian conjecture is true, if the unimodular conjecture holds for the ring \mathbb{Z}_p of *p*-adic integers, for all primes *p*. The proof is based on the following result, which is a special case of a version of Hensel's lemma ([B], Chap.III. section 4, Corollaire 2):

Theorem (Hensel). Let $F \in \mathbb{Z}_p[X]^n$ be a Keller map. If $a \in \mathbb{Z}_p^n$ is such that F(a) is in $(p\mathbb{Z}_p)^n$, then there exists a unique $b \in \mathbb{Z}_p^n$ such that F(b) = 0 and $b_i \equiv a_i (mod \, p\mathbb{Z}_p)$ for all i.

Theorem 5. If $F \in \mathbb{Z}_p[X]^n$ is a Keller map and $c \in \mathbb{Z}_p^n$ then $\#F^{-1}(c) \leq p^n$. *Proof.* If $\#F^{-1}(c) = 0$ we are done, so assume that $\#F^{-1}(c) \geq 1$, say c = F(a) for some $a \in \mathbb{Z}_p^n$. Then G = F - c is a Keller map in $\mathbb{Z}_p[X]^n$ and $F^{-1}(c) = G^{-1}(0)$. If $b \in F^{-1}(c) = G^{-1}(0)$, then $G(b) = 0 \in (p\mathbb{Z}_p)^n$. So by Hensel's theorem b is completely determined by the element $\overline{b} \in (\mathbb{Z}_p/p\mathbb{Z}_p)^n$. Since there are at most p^n choices for \overline{b} (for $\mathbb{Z}_p/p\mathbb{Z}_p \simeq \mathbb{F}_p$), there are also at most p^n choices for $b \in G^{-1}(0) = F^{-1}(c)$, which concludes the proof.

Theorem 6. The Jacobian conjecture is true if the unimodular conjecture is true for the p-adic integers, for almost all p.

Proof. i) It is well-known that it suffices to prove the Jacobian Conjecture for Keller maps with integers coefficients ([Es], 1.1.19). So let $F \in \mathbb{Z}[X]^n$ with det JF = 1. We view F as a map from $\overline{\mathbb{Q}}^n$ to $\overline{\mathbb{Q}}^n$, where $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} . It suffices to show that this map is injective, because it then follows that F is invertible over $\overline{\mathbb{Q}}$ ([Es], 4.2.1) and hence, since det JF = 1, F is invertible over \mathbb{Z} ([Es], 1.1.8).

ii) Assume that F(a) = F(b) with $a \neq b \in \overline{\mathbb{Q}}^n$. Then for almost all p we can embed $\mathbb{Z}[a_1, \dots, a_n, b_1, \dots, b_n]$ into \mathbb{Z}_p ([Es], 10.3.1). Choose such a p and consider $F : \mathbb{Z}_p^n \to \mathbb{Z}_p^n$. Since F(a) = F(b) with $a \neq b \in \mathbb{Z}_p^n$ and, by assumption, the unimodular conjecture holds for \mathbb{Z}_p , it follows from theorem 4 that there exists a Keller map with coefficients in \mathbb{Z}_p which has a fiber of at least $p^n + 1$ elements. This contradicts theorem 5 and completes the proof.

The main result of this paper, theorem 7 below, follows from theorem 6 and the following remark:

Remark. If $R = \mathbb{Z}_p$ the unimodular conjecture is equivalent to: if $F \in \mathbb{Z}_p[X]^n$ is a Keller map, its induced map $\overline{F} : \mathbb{F}_p^n \to \mathbb{F}_p^n$ is not the zero-map.

Proof. Just observe that an element of $u \in \mathbb{R}^n$ is unimodular if and only if $\overline{u} \in \mathbb{F}_p^n$ is unimodular (since \mathbb{Z}_p is a local ring) or equivalently if $\overline{u} \neq 0$ in \mathbb{F}_p^n .

Theorem 7. The Jacobian Conjecture is equivalent to the following statement: for almost all prime numbers p each Keller map $F \in \mathbb{Z}_p[X]^n$ has the property that its induced map $\overline{F} : \mathbb{F}_p^n \to \mathbb{F}_p^n$ is not the zero-map.

Final remarks on the unimodular conjecture

Proposition 8. The Jacobian Conjecture (over \mathbb{C}) implies the unimodular conjecture.

Proof. Let $F \in R[X]^n$ be a Keller map and R a ring contained in a Q-algebra. Since the Jacobian Conjecture over \mathbb{C} implies the Jacobian Conjecture over all such rings R ([Es], 1.1.12), F has a polynomial inverse over R, say G. Let u be unimodular. Put b = G(u). Then F(b) = u, is unimodular.

In order to prove the Jacobian Conjecture we only need the unimodular conjecture to be true for local rings. To conclude this paper we will show that for local rings *containing the rationals* the unimodular conjecture is true:

Proposition 9. Let R be a local ring with maximal ideal m such that $\mathbb{Q} \subseteq R$. Then the unimodular conjecture holds for R.

Proof. Let $F = (F_1, \dots, F_n) \in R[X]^n$ be a Keller map. As in the proof of the remark above it suffices to show that $\overline{F} : k^n \to k^n$ is not the zero-map, where k = R/m is the residue field of R. However this follows easily since the hypothesis $\mathbb{Q} \subseteq R$ implies that $\mathbb{Q} \subseteq k$. So k is an infinite field. If $\overline{F} : k^k \to k^n$ is the zero-map, this implies that $\overline{F_i} = 0$ for each i. So for all i all coefficients of F_i belong to the maximal ideal m, contradicting the hypothesis det JF = 1.

References

[BCW] H.Bass, E. Connell and D. Wright, The Jacobian Conjecture: Reduction of Degree and Formal Expansion of the Inverse, *Bulletin of the American Mathematical Society* 7 (1982), 287-330.

[B] N. Bourbaki, Algèbre Commutative, Chapitre III, Hermann Paris.

[CD] E. Connell and L. van den Dries, Injective polynomial maps and the Jacobian Conjecture, *Journal of Pure and Applied Algebra*, 28 (1983), 235-239.

[Es] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, Vol. 190, Birkhäuser 2000.

[Ke] O. Keller, Ganze Cremona-Transformationen, Monatshefte für Mathematik und Physik, 47 (1939), 299-306.