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Abstract 

We discuss saddlepoint approximations to the distribution of the sum of independent non-

identically distributed binomial random variables. The saddlepoint solution is the root of a 

polynomial equation. The paper provides an expression for the coefficients of a polynomial of 

any degree, the root of which can be found using a simple root-finding algorithm. We 

examine the accuracy of the saddlepoint methods for a sum of ten binomials with different 

sets of parameter values. The numerical results indicate that the saddlepoint approximations 

provide very accurate estimates for the probability mass function and the right-tail 

probabilities for the cumulative distribution function of the sum. 
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1 Introduction 

We are interested in obtaining the probability distribution of the sum of independent 

binomial random variables that are not necessarily identically distributed and in estimating 

the rare event probability that the convolution exceeds some large threshold. Convolutions of 

non-identical binomial variables occur in a variety of settings as for instance in reliability 

analysis and quality control, including acceptance sampling (KOTZ and JOHNSON, 1984; 

JOLAYEMI, 1992). Other applications include the analysis of DNA matching in the context of 

a genome search (SMALLEY, WOODWARD and PALMER, 1996) and measures of bundle 

compliance as indicators of quality in health care organizations (BENNEYAN and TAŞELI, 

2010). Several physical and stochastic models that give rise to the convolution of two 

binomial variables are addressed in ONG (1995).  

The computation of the exact probability distribution of the sum of non-identical 

binomials by enumeration involves calculating the probability of all possible elements 

consistent with the sum. This naive way of computing is intractable however if the number 

of outcomes with non-zero probability is large. While exact calculation is feasible with 

computer algebra systems such as MATHEMATICA, approximation methods continue to be 

widely used and explored in the literature (e.g., BENNEYAN and TAŞELI, 2010; HONG, 2011). 

There are several approximations for a single binomial distribution, comprehensively 

discussed by JOHNSON, KEMP and KOTZ (2005). Some of these approximations provide highly 

accurate estimates, but additional research is required, such as reported in BUTLER and 

STEPHENS (1993), to determine whether this accuracy generalizes to a distribution of a sum 

of binomial random variables, each with different success probability. Also, the distribution 

of the convolution can be evaluated to any degree of accuracy using Monte Carlo simulation. 

However, this alternative is likewise inefficient due to the large number of samples required 

to obtain meaningful estimates. There are computationally efficient simulation-based 

approaches such as importance sampling and the cross entropy method (RUBINSTEIN and 

KROESE, 2004), but these methods require an additional layer of computational effort. 

This paper explains how to estimate probabilities of convoluted binomial random 

variables using saddlepoint mass approximations. Saddlepoint approximations were seminally 

explored by DANIELS (1954), and have received considerable recent attention in the statistical 

literature. Although their derivation is fairly complicated, the resulting equations are 

straightforward to use. An accessible and detailed introduction to saddlepoint approximations 

with many applications is provided by BUTLER (2007). PAOLLELA (2007) offers a 

computational approach.  

 The remainder of the paper is organized as follows. Section 2 considers the probability 

distribution of convoluted binomial variables and discusses saddlepoint approximations. The 

saddlepoint approach implies finding the root of a polynomial equation and the section 
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provides an expression for the coefficients of a polynomial of any degree. Section 3 presents 

the results of a numerical investigation. Conclusion remarks are in Section 4. 

 

2 Saddlepoint mass approximations for convoluted binomial variables  

Let 1 2
, , ,

r
X X X

 
be a sequence of r mutually independent binomially distributed discrete 

random variables taking integer values 0,1,2,…, with i
X  having index i

n  and probability 

i
p , i.e., Bin( , )

i i i
X n p . The probability mass function (pmf) of the sum 

1

r

ii
S X  of 

the r binomials is then given by (BENNEYAN and TAŞELI, 2010)  
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The computational impediment is in the 1r  nested summations required for 

complete enumeration over all possible observations consistent with the sum. As indicated, 

such calculation is infeasible unless the number of products in the summations is small.  

The number of arithmetic operations can efficiently be reduced by calculating the 

probabilities recursively (BUTLER and STEPHENS, 1993; CHEN, DEMPSTER and LIU, 1994; 

WOODWARD and PALMER, 1997). SHAH (1973) has shown that the probability of the sum of 

r independent integer valued random variables (not necessarily identically distributed) may 

be calculated using the recurrence relation  

1 1

0

ln[ ( )]
( ) (1 / ) ( )(1 / !) ,

j
s r i

jj i

z

A z
P S s s P S s j j

z
 

 

where ( )
i
A z

 

is the probability generating function (pgf) for the random variable 
i
X

 

and 

 denotes j th-order partial differentiation. As the pgf of a binomial random variable 
i
X

 

is 

( ) (1 ) ,in
i i i
A z p p z  the probability of the sum S

 

of r independent non-identical 

binomials may be obtained as  
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While the use of this recurrence formula requires far less computation than the 

evaluation of each probability directly, the method may be numerically unstable as a result of 

round-off error in computing ( 0)P S  if r  is large and the explosion of the term 

1(1 )
j

i i
p p  if s  is large and i

p  is close to 0 or 1 (HONG, 2011). 

An alternate procedure that avoids exact computation is to obtain a saddlepoint 

approximation to the probability mass function of sum S . The cumulant generating function 

of the convolution is 

 

1
( ) ln{1 exp( )} ( , ).

r

i i ii
K u n p p u u  

 

Let exp( )/ {1 exp( )}
i i i i
q p u p p u . The first-order saddlepoint approximation 

to the pmf of S  is then given by 

 
1/2

1

''ˆ ˆ ˆ ˆ( ) {2 ( )} exp{ ( ) },P S s K u K u us
 

 

where the saddlepoint ˆ (̂ )u u s  is the unique value of u  satisfying the saddlepoint equation 

' ˆ( )K u s , with 
1

'( )
r

i ii
K u nq  being the first-order and 

1

"( ) (1 )
r

i i ii
K u nq q  the 

second-order derivative of ( )K u  with respect to .u  The cumulant generating function ( )K u  

is a strictly convex function when evaluated over ( , )  so "( ) 0K u  for all .u  Also, 

as the binomial variables are independent, the mean of sum S  is 
'

1(0) r
i i i

K n p  and 

the variance is 
2 ''

1(0) (1 ).r
i i i i

K n p p  
The derivative of ( )K u  set equal to s  cannot be solved in closed form, except for 

small values of r , say up to 3 or 4. For example, EISINGA and PELZER (2011) have shown 

that for the sum of two binomials, each with different probability,  

1/2
2 1ˆ ln 4 2 ,u b b ac a  

where 
1 2 1 2

( ) ,a n n s p p
 1 2 1 2 1 1 2 2

( 2 ) ( ) ( )b n n s p p n s p n s p , and 

1 2 1 2
( )c sp p s p p s . However, for larger values of r  the saddlepoint û  must be 
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determined by numerically solving the saddlepoint equation 
' ˆ( ) 0K u s  for .u  As shown in 

Appendix A.1, the saddlepoint is the root of the polynomial equation 
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with coefficients given by  
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where r j
T  denotes the set of all subsets of ( )r j

 
integers that can be selected from r . 

For instance, if 4,r  then for 0,1,2,3j  we have T4={{1,2,3,4}}, 

T3={{1,2,3},{1,2,4},{1,3,4},{2,3,4}}, T2={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}, and 

T1={{1},{2},{3},{4}}, respectively. As an example, Appendix A.2 provides the coefficients of 

the polynomial of degree 4. There always exists a unique real root for the polynomial 

equation. The reason for this is that the convergence strip of the cumulant generating 

function ( )K u  is the whole real number line ( , )  and ( )K u  is strictly convex in u  
(i.e., '( )K u  is strictly increasing) over the whole real line (BUTLER, 2007). Thus solving 

'( )K u s  for any ,u  is rather easy. The root can be found with a simple root-finding 

algorithm such as Newton’s method (RIDGWAY SCOTT, 2011), which is monotonically 

convergent from a suitable starting value. 

For the first-order saddlepoint approximation, the error is of order 1( ),O n  
 

1

1
ˆ( ) ( ){1 ( )},P S s P S s O n

 
 

and there are several approaches to further minimize the error of the first-order 

approximation (GILLESPIE and RENSHAW, 2007). One is to obtain a second-order 

approximation by including adjustments for the third and fourth cumulants (DANIELS, 1987; 

AKAHIRA, TAKAHASHI and TAKEUCHI, 1999; AKAHIRA and TAKAHASHI, 2001). The second-

order saddlepoint mass approximation uses the correction term 

 

2
2
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Further, the saddlepoint equation cannot be solved at the endpoints 0 and
 

1max( ) r
i i
ns  of the support of S . This implies that the approximation does not sum to 

unity, which jeopardizes its accuracy. For a sum of r
 

binomials the exact boundary 

probabilities are given by 
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For small values of 
i
n  or extreme values of 

i
p , a potentially more accurate 

normalized second-order approximation may be obtained, following BUTLER (2007), as  
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The approximate tail probabilities of S  can be determined by numerically integrating 

2
( ).P s  An alternate approach is to use the LUGANNANI and RICE (1980) formula for the 

continuous tail probability approximation. For the discrete setting, DANIELS (1987) 

introduced two continuity-corrected modifications of this tail approximation. One of the first-

order approximations to the right-tail probability is  

 

3
1

1 1ˆ ˆ ˆ( ) 1 ( ) ( ) ,
ˆ ˆ

P S s w w
w u

 

 

provided that ( )s E S . The symbols  and  denote, respectively, the distribution and 

density function of a standard normal random variable, ' 1/2ˆ ˆ ˆ ˆ ˆsign( ){2 ( ) 2 ( )}w u uK u K u , 

where ˆsign( )u

 

captures the sign 

 

for û , '' 1/2

1̂
ˆ ˆ{1 exp( )}{ ( )} ,u u K u

 

and û

 

solves 

' ˆ( ) .K u s  Note that the last term in the expression is undefined if 
1

ˆ ˆ 0w u . This occurs 

if ( )s E S  or ˆ 0u . The approximation at the mean of S  or when ˆ 0u  is  
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''
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i i i i
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1
(0) (1 )(1 2 ).

r

i i i ii
K n p p p  The second-order 

continuity-corrected saddlepoint approximation to the right-tail probability is given by 

DANIELS (1987) as 
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We finally 

note that there are other expressions for the right-tail probability approximation in the 

discrete setting, and that these approximations exhibit different accuracies depending on the 

distribution of S  and the selection of s . A detailed discussion is given by BUTLER (2007). 

 

3 Numerical example 

We examined the accuracy of the saddlepoint approximations for various values of ,
i

r n  and 

.
i
p

 
We give one example, using data from BENNEYAN and TAŞELI (2010). It concerns the 

sum of 10r  binomial variables with parameters i
n

 
and 

i
p

 
as listed in the top panel of 

Table 1. We present the root (̂ )u s  of the saddlepoint equation obtained by Newton’s method, 

the exact probability ( )P s  and the normalized second-order saddlepoint approximation 

2
( ).P s  For comparison, we also obtained the Gram-Charlier (GC) type A series 

approximation of order 6 employed by BENNEYAN and TAŞELI (2010), the single binomial 

approximation with index 
i
n

 
and probability 

1

i
r p , the normal approximation, 

matching the first two moments, and the Poisson distribution, matching the mean of S . The 

computation of the cumulant-based GC approximation 6
ˆ ( )P s  is presented in Appendix A.3. 

The fitted normal density approximation with mean 
'(0)K  and variance 2 ''(0)K  is 

of the form  

 

2 1 1/2 2 2( ; , ) {2 } exp{ ( ) / 2 },N s s  

 

and Pois( ; )s is the fit of a Poisson variable with mean .  
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Table 1 about here 

 

As can be seen in the top panel of Table 1, the normalized second-order saddlepoint 

approximation 
2
( )P s

 
provides a superior fit. It captures both the center of the distribution 

and the tail behavior of S  very well. The GC approximation 6
ˆ ( )P s

 
is very accurate near the 

mean of S  but degrades in the tails. The single binomial approximation is slightly over-

dispersed but performs rather well overall. The normal and the Poisson approximations 

perform poorly in comparison. The middle panel of Table 1 presents the approximations of 

the exact ( )P s  for i
n  multiplied by 10 and i

p  divided by 100. On this occasion, we would 

expect the simple Poisson approximation to work well, since the ' s
i
p  are very small and the 

' s
i
n  are quite large. Both the Poisson and the binomial approximations are seen to 

adequately capture the distribution, as does the saddlepoint approximation 2
( )P s , which 

performs extremely well, especially in the right tail. The normal approximation is again 

ineffective because of the considerable skewness in the distribution of S , whereas the GC 

approximation fails to assume the correct form in the center and in the extreme right tail. 

The bottom panel of Table 1 gives the approximate ( )P s
 
for both i

n  and i
p  multiplied by 

10. For this distribution we would expect the normal Gaussian approximation to work well. 

The normal, the saddlepoint and the GC approximations all provide accurate estimates near 

the mean of the distribution, whereas the binomial and the Poisson approximations behave 

rather poorly. The latter tends to overestimate the tail probabilities at both tails of the 

distribution. The tail behavior of S  is captured well by the normal procedure, but the GC 

and the saddlepoint approximations are observed to be most accurate. The probability values 

provided by the latter procedure are the same as the exact values to accuracy displayed in 

Table 1. For the extreme right tail it provides results that agree to the tenth decimal places. 

Table 2 presents approximations for the right-tail probabilities of S , using the same 

binomial parameters as in Table 1. It presents the exact probability ( ),P S s  the 

normalized second-order saddlepoint approximation 2
( ),P S s  the DANIELS (1987) second-

order continuity-corrected saddlepoint approximation to the right-tail probability 4
( ),ˆ S sP

 

the Gram-Charlier type A series approximation of order 6 6
( ),ˆ S sP  the single binomial, the 

normal and the Poisson approximations. For the normalized second-order saddlepoint and 

the GC approximations, the approximate tail probabilities were obtained by integrating the 

approximations to the mass function of S . The normal approximation uses a continuity 

correction.  
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Table 2 about here 

 

The figures show that the Poisson works fine for very small 
i
p

 
and quite large i

n  

(middle panel) and that the normal approximation performs well for larger values of 
i
p  and 

i
n  (bottom panel). In the latter case, the GC approximation yields extremely accurate 

results, but for smaller values of i
n  (top panel) or 

i
p  (middle panel) it fails to assume the 

correct form in the long right-hand tail and suffers from negative tail probabilities. Whereas 

the single binomial approximation provides rather accurate estimates if its over-dispersion 

relative to the exact distribution is small (top and middle panel), its accuracy deteriorates if 

the parameters of the individual binomials are less homogeneous (bottom panel). The 

integrated normalized second-order method performs well, although it fails to capture the 

extreme right tail if the ' s
i
p  and ' s

i
n

 
are quite large (bottom panel). The second-order 

continuity-corrected saddlepoint approximation yields the most accurate results. In general, 

this saddlepoint method tends to perform better in the extreme right tail than the integrated 

normalized second-order approximation. This conclusion not only holds for the current 

numerical example but for many other realizations of S  we investigated, with different 

values for r  and parameters 
i
n  and 

i
p .  

 

4 Conclusion 

This paper examined saddlepoint approximations to the distribution of the sum of 

independent binomial random variables with different success probabilities. The saddlepoint 

solution is the root of a polynomial equation and we introduced an expression for the 

coefficients of a polynomial of any degree, the root of which can easily be determined with a 

root-finding algorithm such as Newton’s method. The saddlepoint methods were shown to 

provide very accurate estimates for the probability mass function and the right-tail 

probabilities for the cumulative distribution function of the sum. 

 The saddlepoint approximation requires an iterative procedure to obtain the root of 

the saddlepoint equation and once available the method is straightforward to apply. However, 

if the number of binomial variables gets large, the expression for the polynomial equation 

becomes lengthy, which in turn makes determining the approximate probabilities difficult, if 

not impossible. In that case a truncated, as opposed to full, saddlepoint approximation 

introduced by RENSHAW (1998) may be used, which yields a compact approximate expression 

for the probability mass function. As shown by MATIS and GUARDIOLA (2005) this truncated 

saddlepoint method is also straightforward to implement. 

 

Copyright transfer 

The definitive version is available at  wileyonlinelibrary.com 
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Appendix 

A.1 Coefficients 
r k
a  in ˆ( )

r
G v   

The saddlepoint û  must be determined by solving the saddlepoint equation  

 

' 1

1 01

ˆ
ˆ ˆˆ( ) (1 ) 0

ˆ1

rr r
r ki i

i i r ki ki
i i

n pv
K u s s p p v a v s

p p v
 

 

for u , where ˆ ˆexp( )v u  and 
r k
a  are the polynomial coefficients to be determined. This 

equation can only be zero if the term in curly brackets is zero, i.e.,  

 

0
ˆ ˆ( ) .

r r k

r r kk
G v a v s

 
 

If we apply the saddlepoint equation to r  non-identical binomials, collect the 

coefficients of ˆr kv , replace the numbers in the coefficients of the polynomial by binomial 

coefficients, take powers of 1  to capture the sign , and use the notation 

{ : , }
r j i i i

t T t n p  to denote the elements of a subset of a set as explained in the main 

text, then we have  

 

1 1
ˆ ˆ( ) {[ ] }

rr r
r i ii i
G v n s p v  

 
1

0
: ,

{ ˆ( 1) ( 1) ( ) ( )}

r j i i i

r
m j r m

i i

j
t T t n p

r m
r j

r j n t s p t vr m  

 
1

0
: ,

{( 1) ( 1) ( )} ,

r j i i i

r
r j

i

j
t T t n p

s p t s  

 

where 1,..., 1.m r  These three expressions may subsequently be collapsed into the 

expression for 
r k
a

 
presented in the main text. To illustrate, for 1,2,3r  binomials we have  

  

1 :r  

1 1 0 1 1 1
ˆ ˆ ˆ( ) {( ) } { }G v a v a n s p v sp s  
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2 :r  
2 2

2 2 1 0 1 2 1 2 1 2 1 2 1 1 2 2

1 2 1 2

ˆ ˆ ˆ ˆ ˆ( ) {( ) } { ( 2 ) ( ) ( ) }

{ ( )} ,
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3 :r   
3 2 3

3 3 2 1 0 1 2 3 1 2 3
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2

1 2 3 1 2 3 1 2 1 2 1 3 1 3 2 3 2 3

1 2 3 1 2 3 1 2 1 2 1 3 1 3 2 3 2 3

1 1 2 2 3 3

1 2 3 1 2 1 3 2 3 1

ˆ{ (2( ) 3 ) ( ) ( ) ( ) }

{( 3 ) ( 2 ) ( 2 ) ( 2 )

ˆ( ) ( ) ( ) }

{ ( ) (

n n n s p p p n n s p p n n s p p n n s p p v

n n n s p p p n n s p p n n s p p n n s p p

n s p n s p n s p v

sp p p s p p p p p p s p p
2 3

)} ,p s

 

The coefficients of the polynomial of degree 4 are given below.  

 

 

A.2 Polynomial of degree 4  

4 3 2

4 4 3 2 1 0
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where ˆ ˆexp( )v u
 
and 

4 1 2 3 4 1 2 3 4
( ) ,a n n n n s p p p p

 
3 1 2 3 4 1 2 3 4 1 2 3 1 2 3 1 2 4 1 2 4

1 3 4 1 3 4 2 3 4 2 3 4

(3( ) 4 ) ( ) ( )

( ) ( ) ,

a n n n n s p p p p n n n s p p p n n n s p p p

n n n s p p p n n n s p p p

2 1 2 3 4 1 2 3 4 1 2 3 1 2 3 1 2 4 1 2 4

1 3 4 1 3 4 2 3 4 2 3 4 1 2 1 2 1 3 1 3

1 4 1 4 2 3 2 3 2 4 2 4 3 4

(3( ) 6 ) (2( ) 3 ) (2( ) 3 )
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A.3 Gram-Charlier type A series of order 6 

2
2

3 4 5 6 3
6 3 4 5 62 3 4 5 6 3

1 ( ) 1ˆ ( ) exp 1 ( ) ( ) ( ) 10 ( ) ,
7202 6 24 1202

s
P S s H z H z H z H z

where 

2 3

3 1
( 3 2 ),

r

i i i ii
n p p p

 

2 3 4

4 1
( 7 12 6 ),

r

i i i i ii
n p p p p

 

2 3 4 5

5 1
( 15 50 60 24 ),

r

i i i i i ii
n p p p p p

 

2 3 4 5 6

6 1
( 31 180 390 360 120 ),

r

i i i i i i ii
n p p p p p p  

3

3
( ) 3 ,H z z z

 

4 2

4
( ) 6 3,H z z z

 

5 3

5
( ) 10 15 ,H z z z z

 

6 4 2

6
( ) 15 45 15,H z z z z   

( )/ ,z s  with 
1

r

i ii
n p  and 2

1
(1 ).

r

i i ii
n p p  
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Table 1. Probability mass function approximations for the sum of 10r  binomial variables  

 

        

s  (̂ )u s  ( )sP  
2
( )P s  6

ˆ ( )P s
 

Bin ( ; , )
i i

s pn  2( ; , )N s

 

Pois ( ; )s  

 
 
i
n = 12, 14, 4, 2, 20, 17, 11, 1, 8, 11  

i
p =.074, .039, .095, .039, .053, .043, .067, .018, .099, .045 

1 -1.800 0.0165 0.0164 0.0172 0.0168 0.0215 0.0187 
3 -0.678 0.0994 0.0994 0.0986 0.0999 0.0862 0.1021 
5 0.144 0.1716 0.1716 0.1719 0.1712 0.1641 0.1673 
7 0.216 0.1346 0.1346 0.1346 0.1340 0.1481 0.1305 
9 0.492 0.0587 0.0587 0.0590 0.0586 0.0634 0.0594 
11 0.717 0.0160 0.0160 0.0156 0.0161 0.0129 0.0177 
13  0.909 0.022912 0.022913 0.023013 0.022969 0.021237 0.023719 
15 1.078 0.033751 0.033752 0.034015 0.033893 0.045646 0.035805 
17 1.230 0.043543 0.043544 0.042621 0.043762 0.051222 0.046995 
19 1.368 0.052524 0.052525 0.067245 0.052756 0.071253 0.056704 

 
i
n = 120, 140, 40, 20, 200, 170, 110, 10, 80, 110 

i
p =.00074, .00039, .00095, .00039, .00053, .00043, .00067, .00018, .00099, .00045 

1 0.558 0.3231 0.3227  0.3690  0.3230 0.4496  0.3230 
2 1.252 0.0924  0.0928  0.0480  0.0923  0.0889 0.0925 
3 1.659 0.0176  0.0177 0.0284 0.0176  0.023059 0.0176 
4 1.948 0.022514  0.022525  0.022794  0.022508  0.041834  0.022525 
5 2.172 0.032868 0.032881  0.041707  0.032859 0.071915 0.032891 
6 2.356 0.042723  0.042735  0.071167 0.042713  0.0113482 0.042759 
7 2.511 0.052213 0.052224  0.0111077  0.052205 0.0151103  0.052256 

 
i
n = 120, 140, 40, 20, 200, 170, 110, 10, 80, 110  

i
p =.74, .39, .95, .39, .53, .43, .67, .18, .99, .45 

 
510 -0.300 0.052363 0.052363 0.052363 0.041058 0.052346 0.035109 
520 -0.252 0.043730 0.043730 0.043730 0.031056 0.043706 0.021458 
530 -0.204 0.033638 0.033638 0.033638 0.037061 0.033623 0.023436 
540 -0.156 0.022195 0.022195 0.022195 0.023162 0.022191 0.026702 
550 -0.108 0.028202 0.028202 0.028202 0.029471 0.028201 0.01087 
560 -0.060 0.0190 0.0190 0.0190 0.0190 0.0190 0.0147 
570 -0.012 0.0272 0.0272 0.0272 0.0253 0.0272 0.0166 
580 0.036 0.0242 0.0242 0.0242 0.0224 0.0241 0.0157 
590  0.084 0.0133 0.0133 0.0133 0.0132 0.0133 0.0126 
600  0.132 0.024501 0.024501 0.024501 0.025141 0.024501 0.028500 
610  0.181 0.039419 0.039419 0.039419 0.021321 0.039460 0.024854 
620  0.230 0.031213 0.031213 0.031213 0.032230 0.031230 0.032353 
630  0.279 0.059581 0.059581 0.059581 0.042463 0.059902 0.039708 
640  0.328 0.064630 0.064630 0.064628 0.051773 0.064931 0.033418 
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Table 2. Cumulative distribution function approximations for the right tail of the sum of

10r  binomial variables  

        

s  ( )S sP

 
2
( )S sP  

4
( )ˆ S sP  6

( )ˆ S sP  Bin ( ; , )
i i

s pn
 

21
2

( ; , )N s  Pois ( ; )s  

 
i
n = 12, 14, 4, 2, 20, 17, 11, 1, 8, 11  

i
p =.074, .039, .095, .039, .053, .043, .067, .018, .099, .045 

 
 1  0.9973 0.9973 0.9972  0.9968 0.9972 0.9880 0.9967 
 3  0.9310 0.9311 0.9308  0.9300 0.9300 0.9182 0.9246 
 5  0.6847 0.6847 0.6847  0.6847 0.6831 0.7016 0.6765 
 7  0.3481 0.3482 0.3481  0.3479 0.3474 0.3689 0.3496 
 9  0.1187 0.1187 0.1187  0.1180 0.1189 0.1154 0.1257 
11  0.0277 0.0277 0.0276  0.0270 0.0280 0.0196 0.0323 
13  0.024544 0.024545 0.024546  0.024305 0.024654 0.021716 0.026130 
15  0.035432 0.035434 0.035435  0.031122 0.035666 0.047535 0.038897 
17  0.044852 0.044853 0.044855 -0.034031 0.045177 0.051630 0.031015 
19  0.053311 0.053312 0.053313 -0.034341 0.053632 0.061719 0.059326 

 
i
n = 120, 140, 40, 20, 200, 170, 110, 10, 80, 110 

i
p =.00074, .00039, .00095, .00039, .00053, .00043, .00067, .00018, .00099, .00045 
 
1 0.4360 0.4360 0.4375  0.4339 0.4357 0.5382 0.4359 
2 0.1129 0.1133 0.1133  0.0649 0.1127 0.1101 0.1129 
3 0.0204 0.0205 0.0205  0.0169 0.0204 0.025413 0.0205 
4 0.022830 0.022843 0.022840 -0.01142 0.022823 0.045435 0.022844 
5 0.033164 0.033178 0.033174 -0.01422 0.033154 0.061038 0.033191 
6 0.042961 0.042975 0.042970 -0.01423 0.042951 0.0103648 0.043001 
7 0.052381 0.052392 0.052388 -0.01423 0.052372 0.0142331 0.052429 

 
i
n = 120, 140, 40, 20, 200, 170, 110, 10, 80, 110 

i
p =.74, .39, .95, .39, .53, .43, .67, .18, .99, .45 

 
510 0.953616 0.953616 0.953616 0.953614 0.945448 0.953631 0.925770 
520 0.938791 0.938791 0.938791 0.938791 0.934795 0.938796 0.9861 
530 0.928549 0.928549 0.928549 0.928549 0.925910 0.928554 0.9617 
540 0.9889 0.9889 0.9889 0.9889 0.9778 0.9887 0.9104 
550 0.9444 0.9444 0.9444 0.9444 0.9151 0.9445 0.8208 
560 0.8161 0.8161 0.8161 0.8161 0.7690 0.8161 0.6902 
570 0.5825 0.5825 0.5825 0.5825 0.5388 0.5823 0.5306 
580 0.3140 0.3140 0.3140 0.3140 0.2939 0.3139 0.3667 
590 0.1194 0.1194 0.1194 0.1194 0.1184 0.1195 0.2250 
600 0.0306 0.0306 0.0306 0.0306 0.0340 0.0307 0.1214 
610 0.025133 0.025133 0.025133 0.025133 0.026765 0.025184 0.0573 
620 0.035522 0.035522 0.035522 0.035522 0.039185 0.035648 0.0235 
630 0.043757 0.043761 0.043757 0.043757 0.048356 0.043926 0.028387 
640 0.051599 0.051635 0.051599 0.051598 0.055091 0.051728 0.022594 

        
 


