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Abstract

The purpose of the Contextual Suggestion track is to suggest per-
sonalized touristic activities to an individual, given a certain location
and time. In our approach, we collected initial recommendations by
using the location context as search query in Google Places. We first
ranked the recommendations based on their textual similarity to the
user profiles. In order to improve the ranking of popular sights, we
combined the resulted ranking with a number of other rankings based
on Google Search, popularity and categories. Finally, we performed
filtering based on the temporal context.

1 Introduction

The purpose of the Contextual Suggestion track is to suggest personalized
touristic activities to an individual, given a certain spatial-temporal con-
text. For development purposes a set of example activities in Toronto is
provided in the form of web sites (title, description and url) that are rated
by individuals.

We considered two approaches for this task. The first is using the rated
training examples to generate personalized query words in the search for
touristic activities. The search results need then be filtered to the context
(i.e. removing suggestions that do not match the locational and temporal
context). The second approach is to do this the other way around, using the
context and a generic term such as “touristic attractions” as a search query
and then rerank the search results based on the information extracted from
the trainings examples. We chose to work out the latter approach.
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2 Data

As input to the task, we were provided with a set of 34 profiles, 49 examples
of suggestions and 50 contexts in XML form.

Each profile corresponded to a single user and consisted of a list of rated
example suggestions. The rating were divided into an initial rating, based
on the title and description of the example and a final rating, based on all
available information.

Each example suggestion consisted of a title and a short description of
the suggestion as well as an associated URL. The example suggestions were
a collection of bars, museums and other touristic activities in the Toronto
area.

Each context consisted of spatial information (cityname, statename, lati-
tude, longitude) and temporal information (day, time and season). The day
and time were categorical values, weekday or weekend day and morning,
afternoon or evening, respectively.

The task was to provide a ranked list of 50 suggestions for each pro-
file/context pair. Each suggestion should contain a title, description and
associated URL. The description of the item may be personalized. The
suggestions should be appropriate to the profile as well as the geotemporal
context. Time-wise, the user has five hours available for the suggestion,
which puts limitations on the locations of the suggestions.

3 Method

Out method comprises 5 steps: (1) Collecting the initial search results, (2)
building the user profiles, (3) ranking the recommendations for the user
profile, (4) re-ranking the list of recommendations, (5) filtering the recom-
mendations using the temporal context.

3.1 Collecting search results

We started off by collecting search results for each context. In our approach
we mainly used the Google Places API. The advantage of this API is that
the returned search results contain many details such as opening hours,
reviews and events. We used the longitude and latitude of the location in
the context as input for the Google Places API. We extended this with the
keyword “tourist attractions” to focus on touristic activities. The Google
Places API was limited in the number of search results it returned. We
increased the radius within which to search in each search request, with a
maximal radius of 50 km, in order to obtain a sufficient amount of search
results for each context (i.e. more than 50 search results). To obtain short
descriptions of the search results we made use of the Google Custom Search



API. As input query for the custom search we used the URL of the search
result from Google Places or its title when there was no URL available.

3.2 Building the Profiles

We represented the user using a profile consisting of terms with a positive
or negative association to the examples the user had rated. We assume that
the terms in the examples rated with 1 have a positive association for the
user, while the ones rated with -1 have a negative association for the user.
For each user we created a “positive” profile and a “negative” profile.

In the provided profiles, there was a distinction between initial and final
ratings. The initial rating was based on the title and description of the
example only, the final rating included the full content of the web site as
well. Sometimes the initial rating was not the same as the final rating.
Therefore we used the initial rating to decide in which profile (“positive” or
“negative”) the terms from the title and description belonged and the final
rating to decide in which profile the terms extracted from the full web site
belonged. Terms from title and description with neutral initial ratings, or
terms from the web site with neutral final ratings were ignored.

Our initial idea was to simply extract the contents of the web site and
use those words in the profile. However, it is not straightforward to extract
textual content since most web content is polluted with advertising material
or inaccessible because it contains flash for example. Therefore we decided
to take a different approach in obtaining textual content for the url. We
used the title and url in the example as search terms in the Google Places
API. If there was a hit, we extracted the categories, reviews and events for
the first hit and used the terms in them for the respective “positive” or
“negative” profile. This results in the user model UM = {R,,, R,,} in which
R, is the term frequency vector representation of the “positive” profile and
R, of the “negative” term profiles.

3.3 Ranking recommendations

We implemented two variants of our approach: a similarity based method
and a scoring based method

3.3.1 Run 1: Similarity based method - run01TI

For each user the terms in UM will be weighted. In the similarity based
method we used a tf-idf measure [3] to determine the importance of each
term in the profile. The following metric was used to obtain a normalized
term frequency for each term:

f(t,p)

tf(tp) = max{f(w,p) : w € p}




where f(t,p) is the frequency of term ¢ in profile p and p could either be
the set of words from the “positive” profile or from the “negative” profile.
The inverse document frequency was obtained using the following formula:

|E]

idf (t, E) = log‘{e eEE:teel

where the total number of examples |E| is divided by the number of ex-
amples containing term ¢. Each term in each profile can now be represented
with its tf-idf value using the following formula:

tfidf(tap) = tf(tvp) : de(ta E)

For each search result, the terms in the title, google snippet, reviews
and events are extracted. Using the same method as in the aforementioned
formulas the tfidf values are calculated for the terms, but the term frequency
is of course based on the search result itself, rather than the “positive” or
“negative” profile.

Since we now have a vector representation of the search result and vector
representations of the “positive” and “negative” profiles, we can calculate
the similarity between the search results and the profiles using the cosine
similarity measure. The following function is used:

- —

A-B

08(9) = —
[LA[[I|B]]

where A is the search result vector and B is either the “positive” or
the “negative” profile vector. This gives us two similarity values for each
search result. One is the similarity to the “positive” profile, the other for the
“negative” profile. We can rank the search results based on these similarity
scores. We order each items descending on their cospositive sScore. However,
when cospegative > COSpositive We place the item at the bottom of the list
(i.e. after the item with the lowest cospositive score, but with cospositive >
cosnegame). We left them in the list of recommendations to be able to
meet the number of requested recommendations (i.e 50 recommendations
per person/context combination).

3.3.2 Run 2: Language modelling method run02K

We only use the “positive” profile from the user model UM in this method.
We take a language modelling approach and use Kullback-Leibler divergence
to weigh each term. We use pointwise Kullback-Leibler divergence [2], as
suggested by [1]. It functions as a measure of term importance that indicates
how important the term is to distinguish the “positive” examples from all
examples. The following function was used:



P(tlp)
P(tC)

where P(t|p) is the probability of observing term ¢ in the set of “positive”
examples and P(t|C) is the probability of observing term ¢ in the set of all
examples.

A search result is better when it has many terms that are important in
the “positive” examples. For each search result we derive its score by taking
the sum of the Kullback-Leibler scores for the terms describing the search
result:

K Ldiv(t|p) = P(t|p)log

> K Ldiv(t|p)
tes

where S is the set of terms describing the search result. The search
results are ordered descendingly on their scores.

3.4 Re-ranking the list of recommendations

Since we did not have a proper evaluation set, we evaluated the results of the
two methods by rating the example set ourselves and evaluating the recom-
mended items for our own profile intuitively (e.g which order of suggested
activity appealed more to us).

We noticed in the suggestions given by the two runs, that famous touris-
tic attractions do not rank very well. This is likely an artifact of the example
data. For example, the Statue of Liberty, does not resemble any of the ex-
amples in the example attractions in Toronto, so it is no surprise that it
does not receive a high rank. However, we believe that these famous sites
should rank well. Therefore we use some elements from the Google Places
API to increase the rank of these items.

We take an approach in which we created 4 ordered ranked lists. The
final rank is determined by the weighted average rank of the search result
in these 4 ordered lists. The first list is the ranking obtained from step 3
(similarity or scoring based method). The second list is based on the original
Google ranking which is based on the importance of a place, thus ranking
more prominent places high. The third list is based on the Google rating
that other people have given to the place.

The final list is based on the a priori category likelihood. This is based
on the idea that some people have preferences for certain categories of activ-
ities (such as museums) rather than preferences for individual items. From
the training examples we derived the relevant Google categories such as
amusement park, bar, or museum. We then determined the likelihood that
a certain category is rated positively by this person. We do this by counting
the number of times the category occurs in the set of positive examples and
divide it by the total number of category occurrences in the set of positive



examples. We applied +1 smoothing to account for categories that do not
occur in the example set. For each search result the a priori category like-
lihood is estimated by taking the average of the a priori category likelihood
of the categories for that result.

Each list was weighted equally in the weighted average, except the rank
based on the a priori category likelihood, which was weighted with 0.5. This
choice was made because many categories did not occur in the example set.
Because of this missing information we did not want this ranking to be of
too much influence.

3.5 Filtering based on temporal context

In the last phase, we filter the search results that do not match the temporal
part of the given context. We use the opening hours as registered in Google
Places as reference material for determining whether a result matches the
temporal context or not. For example, when the temporal context is evening,
we do not suggest search results that have opening hours until 5pm.

3.6 Presentation of the results

The first impression of a search result is very important. However, not all
Google snippets gave a good presentation of the suggestion. Sometimes it
contained advertisements or an unclear description. Therefore, we decided
to use positive reviews as descriptions for the suggested places. Although
not all reviews are a good descriptor for the suggestion, we think that the
positiveness of the descriptions may prime people to give a good initial
rating. If their initial rating is positive, they may be inclined to give a
positive final rating as well.

4 Results

In this section we present the accuracy and precision@5 results that we
obtained with the two runs we submitted: (1) run01TI ranking based on
TFIDF with cosine similarity and (2) run02K ranking based on point-wise
Kullback-Leibler divergence scores. There were only 44 out of 1750 pro-
file/context pairs taken into account during evaluation and only the top 5
suggestions were evaluated. All results in this section are based on these
220 (e.g. 44*5) datapoints.

Table 1 shows the precision results for the different measures. Only
items that have scored a rating of 2 (i.e good fit, or interesting) are taken
into account. It shows that there are only very small differences between the
TFIDF measure and the Kullback-leibler divergence measure. The results
show a particularly high precision at rank 5 for the geographical fit. The
precision for the top 5 ranks in terms of the rating on description and website



Table 1: Precision @5 results for both runs
Website*GeoTemporal Description ~ Website

run01TI 0.1907 0.4185 0.3963
run02K 0.2185 0.4049 0.4710
Geotemporal Geo Temporal
run01TI 0.5392 0.8934 0.5598
run02K 0.5649 0.9034 0.5839

can be improved. Also the precision on the combination of personal ratings
(e.g. website) and geotemporal fit is not very high. However, as the neutral
items are actually interpreted as bad suggestions, this measure seems to be
quite conservative.
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Figure 1: Accuracies on the ratings and contextual fits (0, 1 and 2)

A more detailed look on the distribution of positive, neutral and negative
ratings is given in figure 1. The two left-most columns of figure 1 show that
approximately half of the suggestions are perceived as interesting (rating
2) when it comes to the opinion of the users. Many items (a third) are
perceived as neutral (rating 1). This may mean that the user is not yet sure
if he/she would want to follow up on the suggestion, in any case the user
is not negative on the suggestion. Overall, around 80% (the sum of the 1
and 2 ratings) of the suggestions are perceived as positive when only the
description is shown. When the website is shown the users are a little less
positive.

The two right-most columns of figure 1 show that there is a big differ-
ence between the accuracy of the suggestions in terms of the geographical
fit to the context and the temporal fit to the context. The difference be-
tween the TFIDF measure and the Kullback-leibler divergence measure is
again neglectable. 95% of the suggestions fit the geographical context. We
were surprised that still almost 5% of the suggestions did not match the
geographical context, because we used the longitude and latitude as input



in Google Places. After manual examination of the ratings we found that
there were several errors in the ratings of the geographical fit. We checked
27 suggestions that were judged as a mis-fit, and only 4 of them did indeed
not match the geographical context. Thus it seems likely that the actual
accuracy in terms of geographical fit is higher. The temporal context is
matched in 62% of the suggestions. This leaves room for improvement. Af-
ter inspection we noticed that theatres and night clubs tend to be suggested
during the day as well. This is caused by the opening hours of the box office,
which are usually in the afternoon and thus according to our algorithm a
suitable suggestion for the afternoon context.

5 Discussion

In the end we struggled with the number of recommendations that we needed
to give. We were expected to present each user with 50 suggestions for each
context. Although we collected 70-100 search results per context, there were
many examples that were filtered out because they did not fit the temporal
context. This means that for 34 of the 50 contexts, we did not provide
enough suggestions. On average we suggested 44,7 locations for a context.
However, since only the top 5 suggestions were evaluated this has no effect
on our results.

We noticed that there is not much variation between suggestions for
one person and the other. This was partly because of the limited example
data. In the training data, each person rated the same items, and the users
were generally very positive about most examples. This meant that the
similarity between profiles was high. There was also little variation in the
results between the Kullback-Leibler method and the TFIDF with cosine
similarity method. This is partly because the two method overlap in 4 out
of 5 steps; they only varied in the initial rating and even then, both are a
measure of term importance within the “positive” profiles.

We also wonder whether personal characteristics are very important in
suggesting touristic activities. After all, people often go to the main points
of interest when they visit a city anyway. It is important that these are part
of the suggestions. Especially when only looking at the top-5 suggestions, it
is likely, and maybe also preferred, that these are formed of the important
sights of a certain location.

Additionally, the training examples were places from the area of residence
of the users. It is possible that when rating places that you are familiar with,
you have other preferences then when it comes to places that you have not
visited before.

We think we have several strong points in our approach. Overall it is
attractive that our approach is completely automated. We think we sug-
gest search results that match the contexts well. This is because we used



search results from Google Places, which allowed us to use precise location
information in the search query and provided us with opening hours in the
results. It is confirmed by the results on the precision of the geographical
dimension. However, the information on opening hours was not available for
all search results. For some club or theatre locations the opening hours of
the box office were used rather than those of the club or theatre itself. Ad-
ditionally, it was difficult to determine a correct fit to the temporal context
automatically. This was caused by the categorical nature of the context (i.e.
morning, afternoon or evening). For example should a place that is open
until 8 p.m. be suggested for the temporal context evening? The results
confirmed that the temporal fit of suggestions need to be improved.

Secondly, we think it is attractive to mix several ranking methods. This
way we could find a balance between personalized suggestions and more
generic famous places suggestion. Additionally, we could use the opinion of
people that have visited the sight already.

And finally, we think the use of reviews as a description for the search
result is attractive, since it gives a personal touch to the suggestion even
though the descriptions are not personalized. A positive review may influ-
ence people, making them more prone to rate the result positively. Overall,
people responded a little better to our descriptions than to the website (see
table 1).
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