Genomics update

Searching in microbial genomes for encoded small proteins

Jos Boekhorst,1,2,3 Greer Wilson4 and Roland J. Siezen1,2,3*
1TI Food and Nutrition, 6700AN Wageningen, the Netherlands.
2NIZO food research, 6710BA Ede, the Netherlands.
3Netherlands Bioinformatics Centre and Centre for Molecular and Biomolecular Informatics, NCMLS, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, the Netherlands.
4Science Consultant, Bowlespark 30, 6701DS Wageningen, the Netherlands.

As the price of genome sequencing has been rapidly decreasing and can be expected to keep on doing so in the next 10 years, the speed at which new microbial genome sequences become available will increase accordingly. In most genome projects, the first step after acquiring a genome sequence is predicting protein-encoding open reading frames (pORFs). Small proteins or peptides, loosely defined as less than 50 amino acids, encoded in microbial genomes have been largely underestimated. Recent focused functional genomics efforts have led to the identification of a number of new small proteins encoded in genomes of both Gram-negative and Gram-positive bacteria, and fungi (Kastenmayer et al., 2006; Li et al., 2008; Hemm et al., 2010; Hobbs et al., 2010; Bitton et al., 2011). Increasing evidence demonstrates that small proteins participate in a wide array of cellular processes and exhibit great diversity in their mechanisms of action. A recent review (Hobbs et al., 2011) highlights examples of small proteins that, in addition to the well-conserved small ribosomal proteins, participate in cell signalling or regulation, act as antibiotics and toxins/anti-toxins, alter membrane features, act as chaperones, stabilize protein complexes or serve as structural proteins (Table 1) (Fig. 1).

Fig. 1. Structure of small proteins. Small secreted proteins exhibit diversity in their three-dimensional structures and can contain unique intramolecular linkages or modified amino acids. For example, the mature form of (A) subtilosin (PDB: 1PXQ) is cyclized in a head-to-tail fashion (link omitted here for clarity) and contains three unique linkages between Cys sulfur atoms and α-carbons of Phe and Thr. In contrast, (B) the bacteriocin leucocin A (PDB: 1CW6) has a single disulfide bond. Reproduced from Hobbs and colleagues (2011), with permission from Current Opinion in Microbiology.

Failure to recognize a pORF encoding a small protein means that these important cell constituents will be missed. Here, we give a brief summary of which problems arise in searching for such encoded small proteins, and what we could do to improve the search process.

How are pORFs predicted?

Most commonly used genome annotation pipelines use Glimmer (Delcher et al., 2007) or similar tools for the ab-initio prediction of pORFs. An overview of commonly used pipelines can be found in Siezen and van Hijum (2010). These tools use sequence characteristics like GC% and codon usage to differentiate between pORFs and non-coding DNA. Sometimes other sequence characteristics are included, e.g. recent versions of Glimmer can include the prediction of putative ribosome binding sites preceding pORFs. These ab-initio approaches have
difficulty accurately predicting small pORFs, as the lack of data makes it difficult to distinguish between signal and background noise. To prevent a large number of predicted false-positives (i.e. predicted pORFs that do not actually code for proteins), many pipelines include a minimal gene size threshold, typically picking a (quite arbitrary) size of around 150 bases, i.e. 50 amino acids. For genomes with a low GC content, this works relatively well, as non-coding DNA of these genomes contains a lot of stop codons. For genomes with a high GC content, the power of this approach is limited, as these genomes contain less stop codons, and genes are less obvious to find (Fig. 2) (Tech and Merkl, 2003).

The accuracy of pORF prediction can be increased by combining an ab-initio approach with similarity-based approaches. These approaches are based on the assumption that pORFs are under selective constraint relative to non-coding DNA: relatively high similarity of a putative pORF to an ORF in another species supports the hypothesis that the pORF encodes a protein. Some pipelines, e.g. RAST (Aziz et al., 2008), utilize this principle by over-predicting pORFs, followed by a step in which small pORFs without significant similarity to ORFs from other species are deleted.

The ab-initio prediction of pORFs is sensitive to sequencing errors. Single-nucleotide read errors can introduce in-frame stop codons or introduce frameshifts. Some pipelines include a step that detects such errors by analysing 5’ and 3’ prime ends of putative pORFs, attempting to generate a longer pORF by introducing a frameshift or removing a stop codon. Unfortunately, small ORFs (say < 300 bases) chopped in half by a frameshift or in-line stop codon resulting from a read error will result in two very small ORFs, which probably will be completely absent from the initial gene calls. These read errors will therefore not be picked up by these steps. A purely similarity-based approach, where either known protein-coding genes are compared against the genome using BLASTN, or amino acid sequence of known proteins are compared against the genome using TBLASTN, would detect these pORFs (and small pORFs in general), but unfortunately most pipelines do not include such a step. The detection of small pORFs based on sequence similarity is discussed in more detail in Poptsova and Gogarten (2010). When such an approach is taken, be careful not to propagate false-positive pORFs from other studies in your own genome!

Experimental support

A more elaborate approach uses whole-genome tiling arrays or RNA sequencing to confirm and refine pORF prediction. A recent study in *Candida albicans* identified as many as 2000 novel transcriptional segments, including both pORFs and non-coding RNAs (Sellam et al., 2010). In these approaches, detection of messenger RNA

Table 1. Types and functions of small proteins.

<table>
<thead>
<tr>
<th>Types and functions</th>
<th>Length minimum</th>
<th>References</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribosomal proteins</td>
<td>37</td>
<td>Wilson and Nierhaus (2005)</td>
<td>High sequence similarity, easy to detect, but often missed</td>
</tr>
<tr>
<td>Bacteriocins</td>
<td>30</td>
<td>Bauer and Dicks (2005); de Jong et al. (2006)</td>
<td>Low sequence similarity; often modified post-translationally</td>
</tr>
<tr>
<td>Regulators</td>
<td>30<sup>b</sup></td>
<td>Hemm et al. (2010)</td>
<td>Often modified post-translationally</td>
</tr>
<tr>
<td>Signalling proteins</td>
<td>44<sup>b</sup></td>
<td>Lopez et al. (2009)</td>
<td>Hydrophobic</td>
</tr>
<tr>
<td>Small membrane proteins</td>
<td>26<sup>b</sup></td>
<td>Hemm et al. (2008); Prymula and Roterman (2009)</td>
<td></td>
</tr>
<tr>
<td>Chaperones and stress resistance proteins</td>
<td>20</td>
<td>Hemm et al. (2010)</td>
<td></td>
</tr>
</tbody>
</table>

^a Number of amino acids (note that many families have members with a wide variety of lengths, the number given is the approximate lower boundary).

^b As reported by Hobbs and colleagues (2011).

Fig. 2. The impact of GC percentage on ORF prediction. Horizontal grey bars are reading frames, vertical black lines are stop codons; (A) the reading frames in the 5’–3’ direction of the first 10 kb of the chromosome of *Streptomyces coelicolor* (high GC%), (B) the reading frames in the 5’–3’ direction of the first 10 kb of the chromosome of *Lactobacillus johnsonii* (low GC%). Figure generated using Artemis (Rutherford et al., 2000).
is taken as evidence that the ORF is transcribed (Fig. 3). As this requires relatively elaborate experiments, they are not routinely part of pORF prediction.

New tools and methods

In addition to the methods mentioned above, new tools have been generated for targeted detection of small pORFs. Some tools are targeted at a specific group of proteins, for example Bagel, a bioinformatics tool for mining bacterial genomes for bacteriocins (de Jong et al., 2006). Other tools aim at small pORFs in general, by combining \textit{ab-initio} methods as described earlier with estimates of selection pressure, e.g. sORF Finder (Hanada et al., 2010). In addition to these bioinformatics approaches, there are also experimental techniques particularly suited or specifically designed for the identification and functional characterization of small pORFs. Many small proteins can be inserted into membranes with relative ease (Kuhn et al., 2010), and protein characteristics like hydrophobicity can be used to infer protein function (Prymula and Roterman, 2009; Prymula et al., 2010). Techniques are emerging that allow us to differentiate between non-functional ORFs and (conditionally) essential or beneficial genes (Dinger et al., 2008). These methods involve the generation of large sets of gene inactivation mutants, followed by essays measuring growth characteristics (Bijlsma et al., 2007; Hobbs et al., 2010) (Fig. 4).

Unfortunately, these new methods are not routinely applied in microbial genome annotation. If the functions most often encoded by small pORFs are of particular interest to you, you should consider including one or more of these dedicated analysis methods in you annotation pipeline.

Why should we care about small protein-encoding ORFs?

Small pORFs are often the first to be removed in genome (re)-annotation, even though closer inspection reveals that many of them have a high coding potential (Li et al., 2008), and studies targeted specifically at identifying small pORFs often identify significant numbers of novel pORFs. A study in \textit{Schizosaccharomyces pombe} identified 39 likely functional proteins (Bitton et al., 2011), and a
study in *Bacillus subtilis* revealed 11 transcriptional units linked to sporulation, many containing functional pORFs (Schmalisch et al., 2010). Still, if most small pORFs had rather boring and uninteresting functions, missing most of them in genome annotation would not be too much of a problem. However, the function of many, if not most, small ORFs remain uncertain. Systematic studies into small pORFs reveal novel gene families with no similarity to known proteins, providing a pool of genes that could be responsible for as yet unexplained regulatory or phenotypic complexity (Warren et al., 2010). An intriguing example of small pORFs with unknown function can be found in *Lactobacillus plantarum* WCFS1 (Fig. 5). Nine consecutive putative pORFs are highly similar to each other, and have excellent ribosome binding sites, yet lack any significant similarity to genes with known or predicted functions.

Setting thresholds

If we cannot get it exactly right, should we aim for over-prediction or under-prediction?

As in many bioinformatics analysis, pORF prediction involves setting a lot of thresholds: what is the minimal length of a pORF? How much is codon usage allowed to deviate from the norm? Choosing liberal thresholds will result in over-prediction, while being strict will mean you are likely to miss real pORFs. Which of these two evils to choose from depends on your research question. If you are designing custom microarray slides to measure gene expression, liberal thresholds are probably the way to go (assuming you can squeeze in the additional probes on the slide). Over-predicted pORFs will simply result in no signal for these ‘ORFs’, while not recognizing real pORFs means you will not detect (changes in) expression for these pORFs, in turn potentially meaning you might not be able to answer your research question.

Wherever you place your thresholds, it is crucial to accurately describe the procedure followed. Although standardization initiatives like the Standards In Genome Sciences (http://sigen.org/index.php/sigen) are gaining ground, it can be non-trivial to figure out how exactly a specific study or annotation pipeline predicts pORFs. This can be especially problematic in comparative genomics studies. Statements like ‘30% of the pORFs in genome A do not have a homologue in any other species, while for species B this is only 5%’ become quite meaningless if they reflect differences in pORF calling rather than biological differences. It has been argued that a common standard for pORF prediction would greatly benefit comparative analysis (Nielsen and Krogh, 2005).

Sometimes the choice of experimental techniques and design can circumvent ORF calling all together. In high-throughput mass-spectrometry-based proteomics, the database against which peptides are searched (Perkins et al., 1999) can be filled in such a way that it includes virtually all potential protein-coding ORFs, as in the database tsORFdb for theoretical small ORFs (Heo et al., 2010). In gene expression analysis, the use of tiling arrays, on which every nucleotide of a genome is represented in at least one probe (Mockler et al., 2005) as well as RNA sequencing (Wang et al., 2009) circumvent ORF calling altogether, and the data produced in these types of experiments can in fact be used to identify pORFs (Fig. 3). Both proteomics and RNA sequencing are rapidly advancing techniques, potentially making the impact of ORF calling issues less of a problem in studies where these experimental techniques could be applied. In contrast, new developments in methods for function elucidation heavily rely on ORF predictions, making the issue far from obsolete.

Future

The cost of sequencing bacterial genomes will continue its journey downward, resulting in an ever-increasing speed at which new sequences become available. This will in turn increase the power of comparative methods for the identification of small pORFs. Wet-lab studies, both high-throughput and low-throughput, will provide experimental confirmation of putative pORFs, allowing the creation, training and validation of more accurate bioinformatics tools for the prediction of pORFs. The downside of
the dramatic reduction in the cost of sequencing a microbial genome is that the speed at which new genome sequences become available keeps increasing, while there is no corresponding increase in man-hours for manual curation. Pioneering genome projects had many man-years available for painstaking checking and correction of automated pORF predictions, while recent genomes are generally annotated completely automatically. In principle, this lack of curation could be offset by the increase in quality of the automated methods (or at least in part), but this requires that scientists pay attention to the use of tools and template genomes and are aware of the pitfalls.

What do these small proteins or large peptides do? Where are they located? Do they reside inside the cell, in the membrane, on the cell surface or are they secreted? How do they get to where they should be? Are short hydrophobic proteins inserted directly into the membrane after ribosomal synthesis (Kuhn et al., 2010)? How are their structures stabilized? Which are subject to post-translational modification and where? Clearly, experimentalists still have lots of high-throughput analyses to complete, and bioinformaticians will need to continuously fine-tune their search algorithms. Exciting times and more still to come.

Acknowledgements

We thank Michiel Wels and Tilman Todt for use of unpublished tiling array data of L. plantarum. This project was carried out within the research programmes of the Netherlands Bioinformatics Centre, which is part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research.

References

Prymula, K., and Roteiner, I. (2009) Functional characteristics of small proteins (70 amino acid residues) forming...