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Abstract—A decreased ratio of the width of retinal arteries
to veins [arteriolar-to-venular diameter ratio (AVR)], is well
established as predictive of cerebral atrophy, stroke and other
cardiovascular events in adults. Tortuous and dilated arteries and
veins, as well as decreased AVR are also markers for plus disease
in retinopathy of prematurity. This work presents an automated
method to estimate the AVR in retinal color images by detecting
the location of the optic disc, determining an appropriate region of
interest (ROI), classifying vessels as arteries or veins, estimating
vessel widths, and calculating the AVR. After vessel segmentation
and vessel width determination, the optic disc is located and the
system eliminates all vessels outside the AVR measurement ROI.
A skeletonization operation is applied to the remaining vessels
after which vessel crossings and bifurcation points are removed,
leaving a set of vessel segments consisting of only vessel centerline
pixels. Features are extracted from each centerline pixel in order
to assign these a soft label indicating the likelihood that the pixel
is part of a vein. As all centerline pixels in a connected vessel
segment should be the same type, the median soft label is assigned
to each centerline pixel in the segment. Next, artery vein pairs are
matched using an iterative algorithm, and the widths of the vessels
are used to calculate the AVR. We trained and tested the algorithm
on a set of 65 high resolution digital color fundus photographs
using a reference standard that indicates for each major vessel
in the image whether it is an artery or vein. We compared the
AVR values produced by our system with those determined by a
semi-automated reference system. We obtained a mean unsigned
error of 0.06 (SD 0.04) in 40 images with a mean AVR of 0.67. A
second observer using the semi-automated system obtained the
same mean unsigned error of 0.06 (SD 0.05) on the set of images
with a mean AVR of 0.66. The testing data and reference standard
used in this study has been made publicly available.
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I. INTRODUCTION

T HE accurate measurement of retinal vessel parameters
is an important problem in eye research, especially in

retinal image analysis. Diseases can alter the width of por-
tions, or the entire length, of retinal vessels, increase their
curvature or tortuosity, and/or change their reflectance of light.
Cardiovascular disease can decrease the width of arteries and
increase the widths of veins. Though this fact was appreciated
by ophthalmologists for years, only recently, through precise
and cumbersome measurements of arterial and venous widths,
has it become clear that small changes in the ratio between
the widths of arterioles and venules, the arteriolar-to-venular
diameter ratio (AVR), are associated with increases in the risk
for stroke, cerebral atrophy, cognitive decline, and myocardial
infarct. [1]–[3]. Other diseases, including diabetic retinopathy
and retinopathy of prematurity are also known to affect the
AVR (see [4] for a comprehensive review). Unfortunately,
relevant changes in AVR are too subtle to be detected by
ophthalmologists during clinical examination and the process
of manually or semi-automatically estimating the AVR from
digital fundus photographs is too cumbersome and laborious
for clinical practice.

Thus, an automated method for determination of the AVR
may have substantial impact on clinical practice, and may lead
to an improved assessment for patients at risk for cardiovascular
and brain disease. This study focuses on a fully automated de-
termination of the AVR from digital color fundus photographs.

The accurate estimation of AVR is challenging and requires
optic disc detection, vessel segmentation, accurate vessel width
measurement, vessel network analysis, and artery vein classifi-
cation. Optic disc detection is necessary to determine the loca-
tion of the region of interest (ROI) where the measurements are
obtained. Vessel segmentation must be used to find the vessels
themselves and the width of the vessels. Any AVR measurement
system must identify which vessels are arteries and which are
veins with high accuracy since small classification errors can
have a large influence on the final AVR. Please note that while
arteriolar/venular are the correct terms, we will use the terms
artery/vein interchangably in this work.

Methods for both AV classification as well as AVR determina-
tion have been presented previously. A semi-automatic method
for the analysis of retinal vascular trees in which the venous and
arterial trees were analyzed separately was presented by Mar-
tinez-Perez et al. [5]. More recent work by Rothaus et al. [6]
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proposes a method to label all vessels as either artery or vein
using an existing vessel segmentation and some manually la-
beled starting vessel segments. Li et al. [7] presented a method
for automatically determining the AVR, however, that method
still required manual user input to separate arteries from veins.
Automated AV classification was first presented by Grisan et
al. [8]: in this method the vasculature is segmented using a
vessel tracking and analysis procedure and the vessel centerlines
are detected. After defining an area of interest around the optic
disc and dividing this area into four quadrants, color based fea-
tures are extracted from the vessel segments that are then clas-
sified into arteries and veins using an unsupervised clustering
method. This method had a total error rate of 12.4% on 24 im-
ages. Kondermann et al. [9] presented a method for AV classifi-
cation based on features extracted from vessel profiles as well as
features based on the local image intensities around the vessel
centerline. The authors obtained an accuracy of 95.32% for as-
signing manually segmented vessel pixels to the correct class in
four images. A combined clustering and classification approach
for separating arteries and veins was presented by Vázquez et al.
[10]. The authors compared different feature sets and classifica-
tion approaches. They also tested the influence of the distance to
the optic disc on their measurements and achieved an accuracy
rate of 86.34% for assigning vessels to the artery or vein class.
However, not all vessels detected by the system were included
in the reference standard.

Ruggeri et al. [11] was the first group to present a method
with an evaluation based on the actual AVR that was measured
manually in the image. The authors report a correlation in 14 im-
ages varying between 0.73 and 0.83 depending on how the AVR
was calculated. Tramontan et al. [12] further extended the algo-
rithm with enhanced vessel tracking and structural AV discrimi-
nation features obtaining a correlation of 0.88 on 20 images. The
system was then implemented as a webservice which allowed
graders to check and change the algorithm results [13]. An eval-
uation by three graders analyzing 30 fundus images showed high
reproducibility of the system’s measurements between the three
graders.

The system we propose and evaluate in this paper combines
methods that were previously described by our group as well as
newly proposed techniques. The method automatically detects
the optic disc, segments the vasculature, determines the vessel
width, classifies the detected vessels into arteries and veins and
calculates the AVR in the ROI. It is completely automatic and
requires no user input. We compare the AVR output of the auto-
matic, proposed algorithm to that of the IVAN semi-automated
method developed at the University of Wisconsin. This is the
accepted reference standard, and has been used in major studies
associating AVR with cardiovascular disease and prognosis [4].
We also validated the classification system that classifies vessels
into arteries and veins since it is such an important subcompo-
nent.

This paper is structured as follows. Section II describes the
various components of the system. In Section III the data used
is presented. Section IV discusses the performed experiments
and shows the obtained results. Section V discusses the results
of the automated system compared to previous systems as well
as its clinical importance.

Fig. 1. Overview of all steps in the proposed method.

Fig. 2. Image overlaid with the automatically determined ROI region. The re-
gion labeled “B” is where AVR measurements are taken.

II. METHODS

Knudtson et al. [14], [15] published a protocol for the mea-
surement of the AVR. The protocol precisely defines where and
how measurements should be obtained (see Section II-D). The
automated method described herein follows this protocol when-
ever possible. It starts by preprocessing an image to remove the
gradient around the border of the field-of-view (FOV) as well
as to remove slow intensity variations in the image. Further pre-
processing is focused on the detection of the two most important
anatomical landmarks. These are the optic disc, the landmark on
the retina around which the measurements are obtained and the
vasculature, the structure that is actually being measured. After
detecting the location of the optic disc, we automatically place
the ROI, as defined in the protocol, in the image. Vessel width
measurements are obtained and the vessels within the measure-
ment area are classified into arteries and veins. Finally, the AVR
is determined. These steps are also shown in Fig. 1.

A. Preprocessing

We have previously described methods for the preprocessing
steps of the algorithm and will, therefore, only briefly discuss
these here. The interested reader is referred to the references
included with the method descriptions.

1) Field of View Mirroring and Background Removal: Dig-
ital color fundus photographs have a black border around the
FOV (see Fig. 2). The large gradient can disturb feature mea-
surements near the FOV border. It is removed by applying a pre-
viously presented mirroring technique [16]. This method mir-
rors the pixel values from within the circular field of view to
outside the FOV. This operation was performed at the original
image resolution.
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Slow background variations were removed by blurring the
image with a Gaussian filter with a large standard deviation and
subtracting the blurred image from the original. The value of
the standard deviation of the Gaussian filter is not a critical pa-
rameter as long as it is large enough to ensure the blurred image
contains no visible structures such as vessels. This procedure
was performed on both the red as well as the green color planes
separately. For all image processing operations the green plane
is used, additionally, both the green and red planes are used in
the artery vein classification. From here, whenever the green and
red plane is mentioned, it refers to the preprocessed versions.
The blue color plane was not used.

2) Vessel Segmentation and Preprocessing: To segment the
retinal vasculature, a previously presented method [17] based
on pixel classification was used. The filter outputs of a Gaussian
filter bank were used as features to train a kNN-classifier [18]
to detect the vasculature. This method is not scale independent
as the Gaussian filterbank features are extracted at particular
scales. Additionally, the images with which the vessel segmen-
tation method has been trained (the DRIVE database [19]) have
a particular resolution and therefore a particular range of vessel
widths (measured in pixels). As the data used in this study had a
high resolution, applying the standard method trained with the
low-resolution DRIVE data would not produce adequate results.
To attain reasonable performance for the vessel segmentation
step we have downsampled the images with a factor of 4 before
applying the vessel segmentation.

The vessel segmentation method assigns each pixel in the
image a likelihood between 0 and 1 that the pixel is within a
vessel. This results in a “vesselness map” that can be thresh-
olded to produce a binary vessel segmentation. Before thresh-
olding, we upsampled the vesselness map back to the resolution
of the original image, using quintic spline interpolation. To ana-
lyze the vessel network we then applied a skeletonization algo-
rithm [20], [21] on the thresholded likelihood map, reducing all
vessels to a single centerline one pixel wide. Threshold
was used since it gave good results on the training data (the
training data is described in Section III). After the skeletoniza-
tion of the segmented vessels, cross-over and bifurcation points
were removed by counting the number of neighbors for all cen-
terline pixels and removing those with more than two neighbors.
This is necessary because the vessel width and angle in bifurca-
tions is not well defined and/or difficult to measure in the case
of cross-over points. This operation subdivides the vascular net-
work into a collection of vessel segments that are individually
analyzed.

3) Optic Disc Detection and ROI Determination: A super-
vised position regression method [22] was used to detect the
centerpoint of the optic disc. This method estimates how far a
certain position in the image is from the optic disc center. The
estimation is based on measurements obtained in the image and
from the vessel segmentation. The target location is found by
obtaining estimates in many locations in the image, eliminating
those locations that are estimated to be far from the optic disc
and searching around the locations estimated to be close to the
optic disc center. No prior assumptions about the location of
the optic disc in the image are made. The method is first trained
using a large set of images (both optic disc and fovea centered)

for which the location of the optic disc is known. Our method
does not segment the optic disc, therefore we have assumed the
optic disc in our testing data to have a constant size. This is
a valid assumption due to the uniformity of the data used in
this study. All of the images have the same resolution in pixels
and cover approximately the same area of the retina. After per-
forming some manual measurements in the training set we as-
sumed a value of 360 pixels for the optic disc diameter (DD),
at this diameter, the vast majority of optic discs is completely
covered. The optic disc detection proceeds as follows, the au-
tomated method detects the center of the optic disc and a circle
with diameter of 360 pixels is placed at this location. We as-
sumed this circle corresponds with the optic disk outline in the
image.

The AVR calculation protocol [15] precisely defines the re-
gion of interest (ROI) in which the AVR should be measured.
This ROI is centered on the optic disc (see Fig. 2). The ROI
consists of several circular regions whose size is based on the
approximate diameter of the optic disc. Region A is between 0.5
and 1 DD from the optic disc center and region B, where vessel
measurements are taken, is between 1 DD and 1.5 DD from the
optic disc center. All analyses and evaluations performed in this
work are based on measurements within region B.

B. Vessel Width Measurement

After vessel segmentation and preprocessing, the vascula-
ture was thinned and subdivided into a set of vessel segments.
All vessel segments that were not (partly) inside region B (see
Fig. 2) were removed as they were not used in the AVR anal-
ysis. Even though the vessel segmentation algorithm we used
can successfully localize most vessels, i.e., wide and narrow
ones, choosing a single threshold to produce a binary segmen-
tation of the vasculature that can be used to determine the local
vessel width is difficult. The values in the likelihood map, as
produced by the vessel segmentation algorithm, tend to zero as
one moves away from the vessel border into the retinal back-
ground. This effect is also dependent on the vessel width with
narrower vessels having an overall lower likelihood response
than wider vessels. Consequently, relatively small variations in
the applied threshold result in substantial vessel width differ-
ences and thresholds that give visually pleasing results for wider
vessels completely miss smaller vessels. This is further compli-
cated by the fact that the vessel detection is performed at a lower
resolution resulting in larger errors after upsampling.

The semi-automated software that was used to establish the
reference standard for our AV ratio measurements, IVAN, uses a
technique called “tobogganing” [23], [24] in its vessel segmen-
tation algorithm. As we wanted to obtain similar vessel widths
to IVAN, we have combined tobogganing with our vessel seg-
mentation. This has the added benefit that we can do the vessel
width analysis on the original images in their original resolution
instead of on the subsampled images on which the vessels were
segmented.

1) Combining Tobogganing and Vessel Pixel Classification:
Tobogganing is a segmentation technique that subdivides the
image into areas (i.e., “splats”) that are homogeneous based on
a certain criterion. The technique’s results are analogous to the
“catchment basins” in watershed segmentation [25]. We used
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Fig. 3. Image showing the most important processing steps described in Section II-A on a small sub-image. (a) The color fundus image. (b) The vessel likelihood
map. A higher pixel value in this image means a higher vessel likelihood. (c) The splat map, the borders of the individual splats are shown. (d) The processed vessel
likelihood map. Each splat has been assigned the median vessel likelihood value under the splat. (e) The vessel centerlines where each centerline pixel has been
asigned the likelihood it is inside a vein (dilated for display). (f) The final width measures superimposed on the original image. Only every third measurement was
plotted.

the multiscale gradient magnitude image [25] to define homo-
geneity. To calculate the gradient magnitude, the image is con-
volved with a first derivative of Gaussian filter in both the
and direction after which the magnitude of the gradient is ob-
tained for each pixel. The gradient magnitude at various scales
(i.e., various standard deviations ) tends to have a maximum at
the border of high contrast structures such as the vasculature. A
lower scale filter will give more response at the border of small
vessels and a higher scale filter will give more response at the
border of wider vessels. To obtain the multiscale gradient mag-
nitude image we calculated the scale-normalized gradient mag-
nitude at scales , 2,3,4, 5, 6 and used the maximum value
over scale for each of the pixels in the image. After applying the
tobogganing method, a splat map with around 150 000 splats
[Fig. 3(c)] was obtained. The likelihood map produced by the
vessel segmentation algorithm can now be used to determine
for each splat the likelihood it is inside a vessel. This is accom-
plished by assigning to each splat the median likelihood value of
all the pixels that are part of the splat. We can assume the splats
are either inside or outside the vessel (note that this assumption
does not always hold in the case of low contrast, narrow vessels).
Given a correct likelihood map this results in the splats inside
the vessel being assigned a higher likelihood than those outside
the vessel. In the resulting vessel map, the borders of the ves-
sels are better defined and the widths of the vessels become less
dependent on the chosen vessel segmentation threshold. This
enhanced vessel map was used to determine the vessel width.

Fig. 3 shows the process in more detail on a small subimage
taken from one of the test images.

2) Measuring the Vessel Width: Measurement of the local
vessel width must be performed perpendicular to the local
vessel angle in order to minimize errors during the measure-
ment process. The local vessel angle is determined for all
centerline pixels in every vessel segment. We have defined the
local vessel angle as the direction of the largest eigenvector of
the covariance matrix of the coordinate of the centerline pixel
along with the coordinates of its seven connected neighbors to
both sides (i.e., 15 coordinates in total). As it is unknown where
the vessel begins or ends, the range of the angles is .
Near the end of the vessel segment only centerline coordinates
inside the vessel are used, 8 for the end pixel.

For each centerline pixel the local vessel width was measured
by finding the left and right vessel edges in the enhanced vessel
map and calculating the distance between them. To determine
the locations of the edges of the vessel, the likelihood was mea-
sured along a line through the centerline pixel and perpendicular
to the local vessel angle. Starting from the centerline pixel the
vessel border was found in both the left and right directions.
The likelihood threshold at which a splat is no longer part of
a vessel is a critical parameter in this algorithm. As the likeli-
hood assigned to vessel splats varies over the image and is de-
pendent on local vessel contrast and vessel width, a local vessel
threshold was determined for every centerline pixel. The vessel
likelihood under the centerline pixel was multiplied by a ratio
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TABLE I
COMPLETE SET OF FEATURES EXTRACTED FOR EACH CENTERLINE PIXEL

to determine the appropriate value for the vessel threshold. A
ration of 0.7 was found to give good results on the training set.

After all vessel widths for a vessel segment were determined,
error correction was performed by finding sudden, local changes
in the vessel width. Based on measurements in the training set,
we defined sudden changes as more than 3 pixels from one cen-
terline pixel to the other. These happen when a vessel splat is not
included or a background splat is included in the vessel width
measurement. The ratio threshold was varied locally until the
width measurement was similar ( pixels difference) to the
average width at the preceding 8 vessel centerline pixels. If the
vessel width could not be adjusted to match the mean width,
the originally detected vessel width was kept. Even though this
would leave possibly erroneous measurements in the analysis,
failed measurements mostly occurred in narrow, low contrast
vessels that had little influence on the AVR. In addition to mea-
suring the vessel width we also stored the location of the left
and right vessel boundary for each centerline pixel. Using these
two points, a profile across the vessel was defined, this profile
is used to extract feature data from across the vessel.

C. Classification Into Arteries and Veins

To enable separate analysis of the arteries and the veins in the
image, the previously detected vessel segments need to be as-
signed to one of these two classes. We used a supervised system,
i.e., trained with examples. The system is an adapted and en-
hanced version of the classification system described in [26].
After a one time training procedure the method can be used to
classify previously unseen centerline pixels into either artery
or vein (AV classification). The pre-processing procedure and
vessel width measurements as detailed in Sections II-A and II-B
are applied to all images in the training set. An expert indicated
whether a given major vessel was an artery or vein for each of
the training images.

1) Training Phase: In the training phase a classifier is trained
using the expert labeled vessels in the training set, in order to
distinguish between both classes of centerline pixels. As not
all vessels in the training set were marked as artery or vein,
centerline pixels from unmarked vessels were not included in
the training dataset. For all remaining centerline pixels in the
training images, a set of 27 local features was extracted. Table I
shows the list of extracted features, some of the features in this
list were used previously in [8] and [12], in general we chose
features that characterize the color as well as the color variation
in the vessel. All features measured across the vessel are based
on the profiles as determined in the previous section.

The absolute color of the blood in the vessels varies between
images and across subjects. This variation has several causes.
Primarily, the amount of hemoglobin oxygen saturation influ-
ences the reflectivity of the blood column, and this difference
allows the difference between higher saturation arterial from
lower saturation venous blood to be visualized. Next, lens ab-
sorption for different wavelengths is influenced by aging and
the development of cataract, causing shifts in the spectral distri-
bution of light reflected by blood. Individual difference in pig-
mentation of the retinal pigment epithelium below the blood
vessels also influence the spectrum of reflected light. Finally,
across examinations, even from the same subject, differences
in flash intensity, flash spectrum, nonlinear optical distortions
of the camera, flash artifacts, and focus also cause considerable
variability. These factors complicate classification substantially,
and normalization to zero mean and unit standard deviation of
the vessel color features for every individual image is therefore
important for successful classification. After sampling the fea-
tures for each centerline pixel, the appropriate labels were as-
signed based on the reference standard and all training samples
were stored in a training dataset. This sampling process was re-
peated for all images in the training set.

The training set was then split into a separate classifier se-
lection training and test set. An extensive comparison of sev-
eral different classifiers was performed using these two sets:

-nearest neighbor classifier, support vector machine classifier,
linear discriminant classifier, and a quadratic discriminant clas-
sifier. The classifier that maximized the area under the receiver
operator characteristic (ROC) curve [27] was selected. For each
experiment the features were normalized to zero mean and unit
standard deviation. Note that this is a normalization across all
training samples (i.e., images) and is different from the normal-
ization of the color features that is performed for each training
image individually. In this preliminary experiment the linear
discriminant classifier showed the best results. Feature selection
decreased performance on the training set, so the complete set
of features was used for the experiment on the test data.

2) Applying the AV Classification to Unseen Data: After
the one time training phase was finished, the trained classifier
was applied to the images in the test set. All the test images
were first preprocessed similarly to the training images. For
each centerline pixel the complete set of 27 features was ex-
tracted. The trained classifier was then used to assign a soft label

. Here, a label close to 0 meant the pixel was likely
in an artery and a label close to 1 meant a pixel was likely in
a vein (see Fig. 4 for an example). We assumed that all pixels
in a vessel segment are either in an artery or a vein. Each soft
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label assigned to a centerline pixel can be regarded as a vote for
the label of the complete segment. Combining these votes can
be done in many different ways but we have found, using pre-
liminary experiments on the training set, that taking the median
label for the entire vessel segment works well.

Due to variation in the local image characteristics, the soft la-
bels assigned to each of the segments can vary over the image.
A global threshold will not always successfully separate the ar-
teries from the veins within a single subject and will vary be-
tween subjects. To perform the final classification we used the
prior knowledge that arteries and veins usually come in pairs.
This means that, when going around the optic disc in a circle in
region B of the ROI, one will generally encounter an artery after
first encountering a vein and vice versa. Since this rule does not
always hold and finding the matching vessel segment for a par-
ticular different vessel segment is nontrivial, we propose to use
a voting procedure.

During this procedure, all vessel segments intersecting with
a circle of a certain diameter around the optic disc and within
region B of the ROI were eligible for matching. Finding the
nearest neighbor vessel segment on a circle is straightforward,
this can be done by finding the nearest intersection point on the
circle. The soft AV labels of both points were compared and the
vessel segment with the highest soft label received a vote for
“vein” and the other received an “artery” vote. Then the next
nearest unpaired vessel was selected and the procedure was re-
peated. It is obvious that the outcome of this procedure is de-
pendent on the starting vessel segment. By picking a different
vessel segment as the starting segment, the distribution of the
AV votes amongst the vessel segments will vary. All vessel seg-
ments eligble for matching were therefore selected once as the
starting vessel and the matching procedure was repeated. Fi-
nally, the votes were counted and each of the vessel segments
was assigned a hard label (i.e., either artery or vein based on the
received votes). Vessel segments with a equal number of artery
and vein votes were excluded from the analysis.

D. Calculating the AVR

The arteriolar to venular ratio is defined as
where CRAE is the Central Retinal Artery

Equivalent and CRVE is the Central Retinal Vein Equivalent.
To calculate these numbers, Knudtson et al. [15] describe an
iterative process for matching up vessels and calculating the
CRAE and CRVE. The widest six veins and arteries (these do
not have to be paired) are entered although fewer total number
of widths can be used in case not enough measurement points
are available. Algorithm 1 shows how we implemented this
procedure.

The proposed automated method supplements the manual
procedure, outlined in the previous paragraph, with several
important steps. This is needed to deal with the fact that the
final voting procedure as described in Section II-C2 is based on
measurements obtained on a circle with a certain diameter. The
chance that all vessel segments in the ROI will intersect with
a single circle of any particular diameter is small. Therefore,
the voting procedure and AVR calculation should be repeated

Fig. 4. AV centerline classification result overlaid on a retinal image. A cen-
terline pixel with a higher pixel intensity has a higher likelihood to be a vein
according to the algorithm.

at various diameters within the ROI (see Fig. 5). The diameters
we chose were from 1 DD to 1.5 DD in steps of 0.1 DD
where DD was 360 pixels, so the voting and AVR calculation
procedure was repeated six times. Note that this samples the
ROI equidistantly. For each circle diameter, the AV voting
procedure is performed, the local vessel width is measured (see
Section II-B) and stored in two vectors, for arteries and
for veins. Next, Algorithm 1 is used to calculate the AVR. The
resulting six AVR values are averaged to arrive at the final AVR
estimate for the complete image.
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Fig. 5. Detail of a fundus photograph showing the measurement diameters and
the vessel crossings where width measurements are obtained. The white dots
indicate the points on the vessels where measurements are obtained.

III. MATERIALS

Sixty-five digital color fundus photographs were acquired for
training and testing of the system. All images were obtained
from patients with primary open angle glaucoma at the Uni-
versity of Iowa Hospitals and Clinics using a 30 Zeiss fundus
camera (Carl Zeiss Meditec, Dublin, CA), with digital back
(OIS systems, Sacramento, CA). The images were centered on
the disc. The dimensions of the images are 2392 2048 pixels
with 8-bits per pixel per color plane, and stored in JPEG format
for export. To train the AV classification component and deter-
mine the parameters for the algorithm, 25 digital color fundus
photographs were randomly selected from the set of 65. The re-
maining 40 images were assigned to the test set and were only
used to evaluate the complete system.

An ophthalmologist (AVD) labeled the major vessels in the
images of the training set as either artery or vein to train the
artery vein classification method. As only the vessel center-
lines needed to be labeled, precise vessel segmentation was not
needed. Labeling was done by manually drawing a line over
the major vessels using a standard painting program. The colors
blue and red were used for veins and arteries respectively.

Two components of the presented method were evaluated on
the test images: the AV classification and the AVR determina-
tion. To evaluate the AV classification, the vessels in each of the
images in the test set were manually labeled as either artery or
vein by an ophthalmologist (AVD). In contrast to the way the
major arteries and veins were labeled in the training set, only
those parts of all vessels (i.e., including the small vessels) that
were inside the ROI were labeled in the test set. We asked the
expert to label all vessels in the ROI as either an artery or a vein.

To set the AVR reference standard, a semi-automated com-
puter program developed by the University of Wisconsin,
Madison, was used (IVAN). We asked two ophthalmologists
to process the images in the test set using this software. Both
ophthalmologists were instructed in the use of the software
using the protocols defined by the software developers. IVAN
finds the optic disc and places the AVR measurement ROI on

Fig. 6. ROC curve of the proposed system for assigning centerline pixels to
either artery or vein class. Area under the curve is 0.84.

the image. It then finds vessels in the image and labels each of
these as artery or vein. It also attempts to measure the vessel
width. IVAN is semi-automated; the ROI localization, the vessel
width measurements and the artery vein classification need
manual adjustment. On average a human observer takes around
10 minutes per image to perform the analysis. The software
is capable of producing several different AVR measures. We
selected “Big 6” as this one corresponds to the AVR described
in [15]. The ratios obtained by the first ophthalmologist (MDA)
were used as the reference standard and the second ophthal-
mologist’s (AVD) ratios were used to determine the variability
between experts.

The 40 images in our test set have been made publicly avail-
able on the internet in the Iowa Normative Set for Processing
Images of the REtina (INSPIRE-AVR) [28]. Included with IN-
SPIRE-AVR are the AVR values we measured using IVAN, our
reference standard.

IV. EXPERIMENTS AND RESULTS

The proposed system was applied to all 40 test images. The
system was able to find the optic disc and successfully placed
the AVR in all 40 images. This was verified by visual inspection
and the ROI was centered on the optic disc in all 40 images.

To compare the artery/vein classification with the labeling by
the human expert we performed an ROC analysis with class 0
(the “negative” class) being artery and class 1 (the “positive”
class) being vein. Note that this analysis was performed on the
vessel centerline pixels only. The proposed classification system
assigned each centerline pixel a value indicating the likelihood
that it was inside of a vein. That is, a value of 0 indicates a cen-
terline pixel likely inside an artery and a value of 1 indicates
a centerline pixel likely in a vein. The ROC curve is shown in
Fig. 6. The system attained an area under the ROC curve of 0.84.
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Fig. 7. Bland–Altman plots of the agreement between the automatic system and the reference standard (a) and between the second observer and the reference
standard (b). The red lines represent the 95% limits of agreement. The dotted line represents the mean difference between AVR measurements.

This means that, given a randomly selected negative (artery cen-
terline pixel) example and a randomly selected positive (vein
centerline pixel) example, in 84% of cases the automatic system
will correctly assign the vein centerline pixel a higher likelihood
value than the artery centerline pixel.

To evaluate the ability of the system to assign an AVR value
to an image we directly compared the AVRs as produced by the
system and the second observer with the reference standard. The
Student’s paired -test showed that there was no significant dif-
ference between the reference standard and the system’s mea-
surements . The same holds for the second observer’s
measurements . Table II shows the results for the in-
dividual images. To visually assess the agreement between both
the automatic system and the second observer and the reference
standard we have plotted the results in Bland–Altman plots [29]
in Fig. 7. This graph plots the mean of two AVR measurements
against the difference between them and allows a visual assess-
ment of the distribution of errors and the agreement between the
two methods.

V. CONCLUSION AND DISCUSSION

This study showed that a completely automatic method can
estimate the AVR in retinal color images with a mean error
similar to that of a human expert who was using the reference
standard system IVAN. The automatic method also successfully
classified retinal vessel pixels into being part of an artery or vein.
The total running time of the algorithm implemented in C++
from initial retinal image to measured AVR value was 9 min on
average, running on a single core of an Intel 2.65 GHz Core 2
Duo. The code was not optimized for speed.

Compared to previously presented methods, the area under
the ROC curve for the AV classification may not seem to be an
improvement. However, it is important to note that, in contrast
with previously presented methods, we classified all detected in-
dividual vessel centerline pixels inside region B of the ROI. This
includes vessels for which the observers were not able to see
whether they were an artery or a vein without tracing the vessel

back to its source. A major issue in artery/vein classification is
the variability in the vessel appearance between subjects and
even within the same image. Many of the previously presented
methods have used clustering instead of classification to over-
come the challenges presented by the high variability between
subjects. We believe the use of color features that are normalized
for each individual image, combined with a supervised classifi-
cation approach, can prevent some of the issues with inter-sub-
ject variability a supervised method may have.

Table II shows the error with respect to the reference stan-
dard of the automated system for each image. The mean AVR
values and their standard deviations of the reference standard are
very close between the automated system and observer 2; a sta-
tistical test showed there was no significant difference between
the means. Nevertheless, there are eight AVR measurements by
the automated system that have an error above 0.10 when com-
pared with the reference standard. However, of these, five show
a relatively good agreement with the measurement done by the
second observer. The Bland–Altman plots (see Fig. 7) show that
both the automated system and the second observer have no sub-
stantial bias as the mean difference between the AVR measure-
ments is close to 0. The 95% limits of agreement for both the
automated and second observer are also almost the same. How-
ever, the second observer has two outliers without which the
95% limits of agreement would have been “tighter” than those
of the automated system showing there is still room for improve-
ment.

There are several limitations of the presented method and our
study. The fact that we chose to use IVAN based AVR mea-
surements to compare against our automated system limits our
ability to draw conclusions about the “true” performance of the
method. However, as IVAN is the de facto standard approach
for measuring the AVR, used in many clinical trials and studies,
we think that comparing the proposed method with (semi-auto-
mated) IVAN is a valid choice. Potentially, a better evaluation of
fully automated AVR estimation would be comparing it to clin-
ical outcome parameters. We would like to do this in the near
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TABLE II
INDIVIDUAL RESULTS FOR EACH IMAGE. COLUMN “REFERENCE” CONTAINS

THE REFERENCE STANDARD READING, “SYSTEM” IS THE OUTPUT FROM THE

AUTOMATIC SYSTEM AND “OBS. 2” CONTAINS THE READING FROM THE

SECOND OBSERVER. ALL NUMBERS IN ITALICS REPRESENT DIFFERENCES

BETWEEN THE FIRST AND SECOND

future. A second limitation is that our approach was developed
for, and was evaluated on, high resolution retinal fundus images
which are typically obtained in a clinical setting. We would like
to further improve the system so it can be used on images ob-
tained by nonmydriatic fundus cameras, which typically have
lower resolution and contrast. A final limitation is the fact we
assumed a fixed size for the optic disc. We expect the use of dif-
ferent data may require retraining of the artery vein classifica-
tion method, also, an optic disc segmentation procedure would
have to be added to deal with varying optic disc sizes but the
basic procedure will remain the same.

The AVR is a known, independent, risk factor for many
systemic diseases, including cerebral atrophy, cognitive de-
cline, stroke and cardiovascular disease, as well as a metric for

retinal diseases, including diabetic retinopathy, hypertensive
retinopathy and retinopathy of prematurity. However, the AVR
is not in clinical use because it is so cumbersome to obtain. Our
approach obtains the AVR from a high quality retinal image
centered on the disc, and is more cost-effective than manual
estimation, with the only human intervention consisting of
taking the retinal photographs. This approach has the potential
to have a major impact on the early detection and treatment of
common neurological, cardiovascular and retinal diseases.

In summary, we have successfully developed a fully auto-
mated method that is capable of estimating the AVR in retinal
color images with a small error that is similar to the error of a
human expert.
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