The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/97283

Please be advised that this information was generated on 2019-10-04 and may be subject to change.
1. Introduction

Although improved quality of life (QoL) is a major objective of cardiac surgery [1, 2], there are few reports concerning QoL after cardiac surgery. QoL relates to more than just the presence of symptoms of disease or the side effects of a treatment or surgery; it is based on how patients perceive and experience these manifestations in their daily life. QoL covers a broad range of experiences related to overall well-being. This means that QoL is based on subjective functioning in relation to personal expectations and is defined by subjective experiences and perceptions.

During the past five years, our group has published several studies concerning QoL after cardiac surgery [3–6]. However, when elaborating the discussions of these studies, we were confronted by several curious observations concerning the number of patients, the follow-up time and the availability of preoperative QoL data. Those who reviewed our studies have also, and rightly so, been critical of these aspects.

This review focuses on these three points, because they are of fundamental value for the conclusions of studies concerning QoL after cardiac surgery. It must be clear that we will not discuss the different QoL questionnaires or the methodology of analyses, because other papers deal with these subjects [7–9].
Table 1. PubMed search command

#	Quality of life [MESH]	#1 and #2 or #3
#1	SF 36/Short form 36 [Title/Abstract]	#1 and #2 or #3
#2	EuroQol/EQ-5D [Title/Abstract]	#1 and #2 or #3
#3	Thoracic surgery [MESH] AND #1 OR #2 OR #3	#1 and #2 or #3
#4	Cardiac surgery [Title/Abstract] AND #1 OR #2 OR #3	#1 and #2 or #3
#5	Heart surgery [Title/Abstract] AND #1 OR #2 OR #3	#1 and #2 or #3
#6	Coronary artery bypass [MESH] AND #1 OR #2 OR #3	#1 and #2 or #3
#7	Aortic valve replacement [Title/Abstract] AND #1 OR #2 OR #3	#1 and #2 or #3
#8	Mitral valve replacement [Title/Abstract] AND #1 OR #2 OR #3	#1 and #2 or #3
#9	Tricuspid valve replacement [Title/Abstract] AND #1 OR #2 OR #3	#1 and #2 or #3
#10	Bentall vs. Ross procedure	#1 and #2 or #3
#11	Ascending aortic replacement [Title/Abstract] AND #1 OR #2 OR #3	#1 and #2 or #3

Limits: Published in the last five years, English.

Table 2. Quality of life (QoL) and cardiac surgery

<table>
<thead>
<tr>
<th>Study (reference)</th>
<th>Number of patients</th>
<th>Follow-up period</th>
<th>Preoperative QoL</th>
<th>Study Intent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aboud et al. [10]</td>
<td>136</td>
<td>2 years</td>
<td>No</td>
<td>Mechanical vs. biological valve replacement and in different age groups (mean ± SD)</td>
</tr>
<tr>
<td>Accola et al. [11]</td>
<td>529</td>
<td>9 months–18 years</td>
<td>No</td>
<td>Valve replacement, male vs. female in patients aged ≥65 years (mean ± SD)</td>
</tr>
<tr>
<td>Akhyari et al. [12]</td>
<td>38</td>
<td>3.2 and 4.2 years</td>
<td>No</td>
<td>Bentall vs. Ross procedure (mean ± SD)</td>
</tr>
<tr>
<td>Ascione et al. [13]</td>
<td>328</td>
<td>3 years</td>
<td>No</td>
<td>Off-pump vs. on-pump (mean ± SD)</td>
</tr>
<tr>
<td>Barry et al. [14]</td>
<td>1072</td>
<td>6 months</td>
<td>No</td>
<td>QoL predischarge vs. six months postoperatively in CABG patients (mean ± SD)</td>
</tr>
<tr>
<td>Bjessmo and Sartipy [15]</td>
<td>210</td>
<td>10 years</td>
<td>No</td>
<td>Elective vs. acute CABG (mean ± SD)</td>
</tr>
<tr>
<td>Bonaros et al. [16]</td>
<td>120</td>
<td>6 months</td>
<td>Yes</td>
<td>Robustly assisted vs. standard CABG (mean ± SD)</td>
</tr>
<tr>
<td>Bradshaw et al. [17]</td>
<td>2051</td>
<td>10 years</td>
<td>No</td>
<td>Survivors postCABG with or without angina (mean ± SD)</td>
</tr>
<tr>
<td>Dunnin et al. [18]</td>
<td>621</td>
<td>10 years</td>
<td>No</td>
<td>Relation between preoperative data, operative data and QoL 10 years postoperatively (mean ± SD)</td>
</tr>
<tr>
<td>El Baz et al. [19]</td>
<td>168</td>
<td>6 months</td>
<td>Yes</td>
<td>Difference in QoL related to the use or otherwise of a clinical pathway (mean ± SD)</td>
</tr>
<tr>
<td>Fukuoka et al. [20]</td>
<td>206</td>
<td>1 year</td>
<td>No</td>
<td>Assess the effect of age on QoL (mean ± SD)</td>
</tr>
<tr>
<td>Gjeilo et al. [21]</td>
<td>203</td>
<td>3 years</td>
<td>No</td>
<td>CABG patients with or without SWI (mean ± SD)</td>
</tr>
<tr>
<td>Jensen et al. [22]</td>
<td>99</td>
<td>3 months</td>
<td>Yes</td>
<td>CABG patients with or without SWI (mean ± SD)</td>
</tr>
<tr>
<td>Jideus et al. [23]</td>
<td>191</td>
<td>6 months</td>
<td>Yes</td>
<td>On-pump vs. off-pump (mean ± SD)</td>
</tr>
<tr>
<td>Kapetanakis et al. [24]</td>
<td>597</td>
<td>4.7 years</td>
<td>No</td>
<td>Isolated valve replacement vs. valve replacement+CBG (mean ± SD)</td>
</tr>
<tr>
<td>Kurlansky et al. [25]</td>
<td>634</td>
<td>5.33 years</td>
<td>No</td>
<td>Aortic valve replacement vs. combined aortic valve+CABG in elderly patients (mean ± SD)</td>
</tr>
<tr>
<td>Kurlansky et al. [26]</td>
<td>390</td>
<td>5.33 and 4.3 years</td>
<td>No</td>
<td>Mechanical vs. biological valve replacement (mean ± SD)</td>
</tr>
<tr>
<td>Lee [28]</td>
<td>109</td>
<td>5 years</td>
<td>No</td>
<td>Identification of determinants of QoL after CABG (mean ± SD)</td>
</tr>
<tr>
<td>Lie et al. [29]</td>
<td>185</td>
<td>6 months</td>
<td>Yes</td>
<td>Impact of a home-based intervention program on QoL (mean ± SD)</td>
</tr>
<tr>
<td>Nogueira et al. [30]</td>
<td>202</td>
<td>1 year</td>
<td>Yes</td>
<td>On-pump vs. off-pump, <65 years vs. ≥65 years (mean ± SD)</td>
</tr>
<tr>
<td>Rnimington et al. [31]</td>
<td>204</td>
<td>1 year</td>
<td>No</td>
<td>Outcome after valve replacement (mean ± SD)</td>
</tr>
<tr>
<td>Sedrakyan et al. [32]</td>
<td>72</td>
<td>18 months</td>
<td>No</td>
<td>Mitral valve repair vs. replacement (mean ± SD)</td>
</tr>
<tr>
<td>Stalder et al. [33]</td>
<td>172</td>
<td>26.6 months</td>
<td>No</td>
<td>Ascending aortic disease with or without disease of the aortic valve (mean ± SD)</td>
</tr>
<tr>
<td>Vichio et al. [34]</td>
<td>121</td>
<td>3.4 years</td>
<td>No</td>
<td>Tissue vs. mechanical valve replacement in octogenarians (mean ± SD)</td>
</tr>
<tr>
<td>Vigano et al. [35]</td>
<td>56</td>
<td>5 years</td>
<td>No</td>
<td>QoL after tricuspid valve surgery (mean ± SD)</td>
</tr>
<tr>
<td>Zhao et al. [36]</td>
<td>171</td>
<td>1 year</td>
<td>Yes</td>
<td>Mitral valve repair vs. replacement (mean ± SD)</td>
</tr>
<tr>
<td>Folkman et al. [37]</td>
<td>126</td>
<td>1 year</td>
<td>No</td>
<td>Aortic valve replacement with or without CABG in octogenarians (mean ± SD)</td>
</tr>
<tr>
<td>Taillefer et al. [38]</td>
<td>82</td>
<td>3 months</td>
<td>Yes</td>
<td>Mechanical vs. biological valve replacement and male vs. female (mean ± SD)</td>
</tr>
</tbody>
</table>

CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention; SWI, sternal wound infection.

4. Discussion

This review shows that information about QoL after cardiac surgery is limited, not only because the number of studies is small, but also because the set-up of the studies differs widely. One reason is that QoL seems to be only a ‘soft’ end point in comparison with survival. Soft end points are difficult to evaluate and highly individual. QoL covers several domains, each affecting the others. Furthermore, the point of departure is different for each patient, as are their expectations of the operation. Yet, in contrast to survival studies, which start with a number of living patients and compare that to the number of patients still alive at a certain moment postoperatively, most QoL studies do not start with preoperative QoL data. Instead, QoL is used (or misused) to compare the effect of, for example, different techniques on the QoL of the patients.
The results, however, are very questionable. For one thing, there is no information about preoperative QoL. Second, patients are selected at a certain moment postoperatively, and only those patients that meet the study criteria – complete QoL information – are eventually included in the evaluation. If we compare this with a simple survival analysis, this means that, at a certain moment postoperatively, a number of surviving patients would be identified and a conclusion about survival made based on only the patients meeting the study criterion – survival. This should mean 100% survival. Another point is that several of these studies pretend to have a long follow-up period. These studies are, however, also misleading. The patients included have a certain follow-up period, but QoL information is provided only at one moment: the studies do not provide information on how QoL has changed during the follow-up period.

The few studies that start with preoperative QoL assessment and go on to compare this to a postoperative QoL registration have a problem of a different kind, since they can only include patients with complete pre- and postoperative registration of the QoL data in their final analysis. In these studies, it is important for the preoperative QoL data of the studied group to be compared to the preoperative QoL data of the excluded group before the conclusion based on the studied data can be generalized to the total population. A striking aspect of these studies is the high drop-out of patients, even at a relatively short follow-up time. In contrast to survival studies, where the only criterion is survival – yes or no – these QoL studies make use of QoL questionnaires based on several domains. Therefore, it is important not only that patients reply to the questionnaire, but also that they provide a clear and complete reply. This often proves to be a problem and is an important reason for the high drop-out rate. It is no coincidence that studies with both pre- and postoperative data have only a limited follow-up.

In our personal experience, we also see a progressive drop-out of patients participating in our yearly organized follow-up after two or three years’ follow-up [39]. This drop-out is not the same as ‘lost to follow-up’. Patients reply to the questionnaire, however, with incomplete data for evaluation of their QoL. Usually, complete case analysis is performed, so all subjects with missing values are excluded. It is a shame that all patients with missing data have to be excluded from a study, and this also decreases the validity of the study. It is possible to input missing data, but this needs a good knowledge of the imputation models and, if used, has to be clearly described [40].

Another point, which is not the focus of our review but something to be aware of nonetheless, is that when the follow-up is long, it is questionable whether the QoL questionnaire used gives good information at that specific moment. For example, QoL might be studied after 10 years in a patient population operated on at age of 70 years or older. At the moment of follow-up, the patients will be over 80 years old, an age to which friability questionnaires will probably give more information about QoL than the SF-36 or EuroQoL questionnaire that was used preoperatively.

In an era when evidence-based medicine is of such great importance, the lack of QoL information after cardiac surgery seems incomprehensible. However, the problem is not the absence of good prospective studies, but more the absence of QoL information studies. The reality is that, in cardiac surgery, prospective studies constitute the minority of our outcome research. Methodologically, it would be also very difficult to obtain good QoL data that would answer clinical questions. For example, if one wanted to study the impact of arterial grafting on QoL, one would need to follow-up a few thousand patients for up to 10 years. Another important, but insoluble, question is of course to what degree the difficulties described and the lack of QoL information affect our surgical practice and knowledge. The lack of major and well-organized clinical studies dealing with QoL after cardiac surgery is understandable, but it is a pity that many of the existing studies do not provide real information about the impact of cardiac surgery on patients’ QoL.

In spite of these objections, but based on our findings from our review, we formulate five minimal basic requirements to increase the value of studies concerning QoL after cardiac surgery. Information should be given on the following:

- The number of patients that could be included in the study. This means defining not only the patient population, instances of isolated coronary artery bypass grafting, isolated aortic valve surgery, etc., but also the inclusion and/or exclusion criteria.
- The number of patients with preoperative and postoperative QoL information and, because QoL information is compound, the number of patients with complete QoL information.
- Whether the study has been performed only on patients with complete data and whether imputation methods have been used to handle the missing data.
- The reason for the missing preoperative QoL data and a comparison of demographics, co-morbidity, cardiac data and risk stratification of the groups with and without preoperative QoL data.
- The reason for the missing postoperative QoL data, and a comparison of demographics, co-morbidity, cardiac data, risk stratification and even preoperative QoL of the groups with and without postoperative QoL data.

These five points seem to us to be important for interpreting a study’s results. Information about the percentage of patients included, risk stratification of patients included vs. not included and information about patients who have dropped out is essential for validation of the results.

5. Conclusions

We conclude that there is a need for good clinical trials concerning QoL after cardiac surgery. As Koch et al. have stated in their review concerning the analytic approach of QoL data, medical doctors need information on the impact of interventions and cardiac operations and on the resulting QoL, not only to justify their decision to operate, but also to be able to inform their patients about the pro and cons of any cardiac operation [9]. From the patient’s point of view, however, it is equally striking that there is no greater call for information about postcardiac surgery QoL.

Based on our review, we suggest that studies present at least preoperative and postoperative registered QoL data.
and also information about demographics, co-morbidity and cardiac risk of the patients who were excluded and who dropped out before generalization of their results.

Acknowledgements
Elise Noyez is thanked for her correction of the English text.

References

eComment: Quality of life after cardiac surgery: underresearched research

Authors: Georgios Dimitrakakis, Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff CF14XW, UK; Ulrich Otto von Oppell
doi:10.1510/icvts.2011.276311A

In their review article (study period 2004 to 2010) regarding the assessment of quality of life after cardiac surgery, Noyez and colleagues found only nine studies presenting the proper preoperative and postoperative data [1]. We would like to add to their data our prospective randomised trial related to outcome of patients after mitral valve surgery plus biatrial modified radiofrequency Maze procedure using the Medtronic Cardioblate System, vs. mitral valve surgery plus intensive rhythm control strategy for persistent or permanent AF [2]. All patients completed the SF-36 Health Survey preoperatively and 3 months and 1 year after surgery.

Grady et al. in their study compared health-related quality of life among cardiac surgical patient groups before and after cardiac operations for isolated procedures and found that health-related quality of life improves early after cardiac operations and remains relatively constant long-term, independent of procedure type [3]. In conclusion, we agree with Noyez et al. that well-designed prospective randomised trials should present preoperative and postoperative registered quality of life as well [1].

References