
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011 1

Evaluation of Registration Methods on
Thoracic CT: The EMPIRE10 Challenge

Keelin Murphy, Bram van Ginneken∗, Member, IEEE, Joseph M. Reinhardt, Senior Member, IEEE, Sven Kabus,
Kai Ding, Xiang Deng, Kunlin Cao, Kaifang Du, Gary E. Christensen, Vincent Garcia, Tom Vercauteren,

Nicholas Ayache, Olivier Commowick, Grégoire Malandain, Ben Glocker, Member, IEEE,
Nikos Paragios, Fellow, IEEE,, Nassir Navab, Member, IEEE, Vladlena Gorbunova, Jon Sporring,

Marleen de Bruijne, Xiao Han Senior Member, IEEE, Mattias P. Heinrich, Julia A. Schnabel, Member, IEEE,
Mark Jenkinson, Member, IEEE, Cristian Lorenz, Marc Modat, Jamie R. McClelland, Sébastien Ourselin,
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Abstract—EMPIRE10 (Evaluation of Methods for Pulmonary
Image REgistration 2010) is a public platform for fair and
meaningful comparison of registration algorithms which are
applied to a database of intra-patient thoracic CT image pairs.
Evaluation of non-rigid registration techniques is a non trivial
task. This is compounded by the fact that researchers typically
test only on their own data, which varies widely. For this reason,
reliable assessment and comparison of different registration
algorithms has been virtually impossible in the past. In this
work we present the results of the launch phase of EMPIRE10,
which comprised the comprehensive evaluation and comparison
of 20 individual algorithms from leading academic and industrial
research groups. All algorithms are applied to the same set of 30
thoracic CT pairs. Algorithm settings and parameters are chosen
by researchers expert in the configuration of their own method
and the evaluation is independent, using the same criteria for all
participants. All results are published on the EMPIRE10 website
(http://empire10.isi.uu.nl). The challenge remains ongoing and
open to new participants. Full results from 24 algorithms have
been published at the time of writing. This article details the
organisation of the challenge, the data and evaluation methods
and the outcome of the initial launch with 20 algorithms. The
gain in knowledge and future work are discussed.

Index Terms—Registration, Chest, Computed Tomography,
Evaluation.
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I. INTRODUCTION

FOR many years researchers have worked on registration
algorithms for medical imaging applications [1], [2], [3],

[4], [5], [6]. One such application is the alignment of thoracic
CT images from the same subject, in particular of the lung
and its internal structures. The lungs are highly deformable
organs making accurate registration of them a challenging task
requiring a non-rigid registration approach [7]. There are many
scenarios in which intra-patient pulmonary registration is clin-
ically useful. Registration of follow-up (temporally distinct)
breathhold inspiration scans should make visual comparison
of these scans a much easier and less error-prone task for
a radiologist. For well-aligned images, automatic methods
of comparison for analysis of disease progression etc. may
even be considered. Breathhold inspiration scans may also be
aligned and compared with breathhold expiration scans to en-
able improved monitoring of airflow and pulmonary function
via CT images. Where 4D data is available (i.e. numerous
CT images representing various phases in a breathing cycle)
these images may be registered in order to obtain information
about the deformations that occur during respiration. Such
information can be used in image-guided treatment, including
motion estimation in treatment planning and is also expected
to be extremely valuable in understanding the effects of disease
on (regional) lung elasticity.

The inability to compare registration algorithms in a mean-
ingful way is a major obstacle to further development and
improvement in the research community. Although many
researchers have published articles demonstrating the results
of their registration algorithms, they are largely based on
proprietary datasets, even with differing image modalities.
Furthermore their methods of evaluating their registrations,
which is a highly complex task in itself, are diverse, further
complicating the task of comparing algorithm results. Some
authors have undertaken the task of running a number of
different algorithms on a fixed dataset in order to compare
the algorithm performances in a reliable manner [8], [9], [10],
[11], [12], [13]. The drawback to this approach, however,
is that the configuration of algorithm parameters for a spe-
cific task is frequently a non-trivial problem which is best
understood by those who developed the method. Ideally the
algorithm should be implemented and configured by those
who are thoroughly familiar with all aspects of its behaviour
in order to obtain optimal performance. There have been
some initiatives in the past which provided common datasets
and evaluation methods for the evaluation of registrations of
brain images [14], [15], [16], while allowing the users to
configure and run their own registration algorithms on the
data. An attempt was made to provide an objective comparison
of pulmonary registration algorithms in [17] and [18] but
based on just one pair of lung images in the case of [17]
and a single phantom in the case of [18]. Furthermore the
methods of registration evaluation in those works are limited
to analysis of 38 manually identified landmarks [17] and 48
plastic markers [18]. Results from 12 algorithms are reported
in [17] and from 8 algorithms in [18].

The EMPIRE10 (Evaluation of Methods for Pulmonary

Image REgistration 2010) challenge [19] described in this
article provides a means for objective comparison of registra-
tion algorithms applied to 30 pairs of thoracic CT data. This
challenge invites participants to download a set of thoracic
CT intra-patient scan pairs and register them using their
own registration algorithms. The aim of the registration is
to align the lung volumes; structures outside the lungs are
not considered during the registration evaluation. The scans
have been selected by the organisers to represent a broad
variety of problems of the type encountered in clinical practice.
Participants calculate deformation fields and submit them to
the EMPIRE10 organisational team for independent evalua-
tion. The deformation fields are evaluated over four individual
categories: Lung boundary alignment, fissure alignment, corre-
spondence of manually annotated point pairs and the presence
of singularities in the deformation field. Evaluation results are
published on the EMPIRE10 website [19]. The advantages of
this approach to registration evaluation are as follows:

• All algorithms will be applied to exactly the same set of
data, designed to be as large and diverse as possible.

• Any algorithm parameters or settings will be chosen
by those familiar with the algorithm and expert in its
configuration.

• The resulting registrations will be independently evalu-
ated, in 4 different categories, using the same criteria for
all participants.

This article describes the organisation of the challenge and
its initial two-phase launch. Phase 1 required participants to
register 20 data sets in their own facilities and return their
registration results to the challenge organisers for evaluation.
Phase 2 consisted of a live workshop at the MICCAI confer-
ence in 2010 [20], where participants registered a further 10
scan pairs. The aim of this work is to describe the challenge
in detail and discuss the outcome of phases 1 and 2 and the
advancement in knowledge achieved.

II. MATERIALS

The materials for this challenge were gathered from several
sources to try to include as broad a variety as possible of the
scenarios encountered in clinical practice. Thus, scans may
be taken at various phases in the breathing cycle (full breath-
hold inspiration, full breath-hold expiration, phase from 4D
breathing data). Subjects may exhibit lung disease or appear
healthy, although they typically do not exhibit gross pathology.
Data from a variety of scanners is included and a variety of
different slice-spacings occur.

In this section we describe in detail the properties of the 30
scan pairs provided to participants. Each scan pair is taken
from a single subject, i.e. only intra-patient registration is
considered in this challenge. The lungs in all images were
segmented using an automatic algorithm from van Rikxoort et
al. [21]. Lung segmentations were checked and altered man-
ually where necessary. In all cases the scan data was cropped
using a bounding box around the lungs before distribution.
This was done to reduce the size of the files to be downloaded
since the regions outside the lungs were to be excluded
from consideration during registration and evaluation. The
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data downloaded by participants also included the binary lung
masks which they were permitted to use during registration.
No other segmentation information was provided.

The remainder of this section describes the 30 scan pairs
categorised by type. Table I lists which scan pairs belong to
which category. Note that the participants were not aware
which scans belonged to which category, or even what cat-
egories of data were included, until after they had registered
the scans and their results had been published.

A. Breathhold Inspiration Scan Pairs

Eight of the thirty scan pairs consisted of two breathhold
inspiration scans (referred to as ‘insp-insp’ in table I). These
scans were acquired as part of the Nelson Study [22] which is
the largest lung cancer screening trial in Europe. Current and
former heavy smokers, mainly men, aged 50 to 75 years are
included in this study. In these 8 pairs the follow up scans
were made between 9 and 14 months after the baseline scan.
A low-dose protocol was used (30mAs) and the scanner was
either Philips Brilliance 16P or Philips Mx8000 IDT 16 in
each case. Slice thickness was 1.00 mm with slice-spacing of
0.70 mm. Pixel spacing in the X and Y directions varied from
0.68 mm to 0.78 mm with an average of 0.74 mm.

B. Breathhold Inspiration and Expiration Scan Pairs

A further 8 scan pairs, also taken from the Nelson
Study [22] were made up of a breathhold inspiration scan
and a breathhold expiration scan, made in the same session
(referred to as ‘insp-exp’ in table I). The inspiration scan
was created using a low-dose protocol (30mAs) while the
expiration scan was ultra-low-dose (20mAs). The scanner used
was Philips Brilliance 16P with slice thickness of 1.00 mm
and slice spacing of 0.70 mm. Pixel spacing in the X and Y
directions varied from 0.63 mm to 0.77 mm with an average
value of 0.70 mm.

C. 4D Data Scan Pairs

Four of the scan pairs consisted of two individual phases
from a 4D dataset. In each case the phases were chosen to be
as distinct as possible, i.e. at opposing ends of the breathing
cycle. Three of the scan pairs were from a GE Discovery ST
multislice PET/CT scanner while the fourth (scan pair 17)[23]
was from a Philips Brilliance CT 16 Slice scanner. The scans
from the GE scanner used a beam current of 100mAs each,
while the Philips scan used 400mAs. Since each scan pair
came from a 4D dataset the spacing was identical for the two
scans in the pair. Slice-spacing was 1.25 mm, 2.50 mm and
2.50 mm for the 3 GE scans and 2.00 mm for the Philips scan.
Pixel spacing in the X and Y directions was set at 0.98 mm
in all cases.

D. Ovine Data Scan Pairs

Four scan pairs were ovine (sheep) data from two datasets
where breathing was regulated. A number of metallic markers
(67 in the first animal, 103 in the second), 1.40 mm in
diameter, had been surgically implanted in the sheep lungs

approximately 6 weeks before scanning. The markers were
implanted mainly in the left upper lobe and right lower lobe.
Airway pressure was regulated during scanning on a Philips
MX8000 Quad Scanner with the sheep in supine position.
Scans were acquired at 3 different airway pressures: 8, 16
and 24 cm H2O. Slice spacing was 0.60 mm with in-plane
pixel spacing of 0.47 mm the first animal and 0.49 mm for
the second.

The metallic markers which were visible in the scans were
identified and their locations noted. They were subsequently
disguised using a hole filling technique in order that par-
ticipants could not identify them and registration algorithms
would not be guided by them. The marker locations were used
in the registration evaluations (see section IV-C) .

E. Contrast - Non-Contrast Scan Pairs

Two pairs of scans were used in which contrast material was
present in one scan of the pair but not in the other. These scans
were acquired on a Siemens SOMATOM Sensation CT 64-
slice scanner. The contrast scan (arterial phase) was acquired
approximately 30 seconds after the non-contrast scan in each
case. Slice spacing was 1.50 mm with pixel spacing in the X
and Y directions of 0.60 mm for the first subject and 0.69 mm
for the second.

F. Artificially Warped Scan Pairs

Since registration algorithms are difficult to evaluate in a
quantitative way, a frequently employed method (e.g. [24],
[25], [26]) is to apply a known artificial transformation to a
single dataset and then attempt to register the original scan
with the result. In this case the ground truth is known so
evaluation is more reliable. For this reason 4 scan pairs were
included in the EMPIRE10 challenge which consisted of an
original scan and the same scan with an artificial thin-plate-
spline warp applied to it.

The procedure for warping a scan artificially was as fol-
lows: A pair of breathhold inspiration scans from the Nel-
son Study [22] was acquired. One hundred well-dispersed
landmark points were identified automatically in the baseline
scan and matched semi-automatically in the follow-up scan.
Landmark identification and matching was done according to
the method described in [27], [28]. A thin-plate-spline model
was created using the 100 pairs of matching points. Using this
thin-plate-spline model and linear interpolation, the baseline
image was warped to create an image with the same image size
and spacing as the follow up scan. The anatomical appearance
of this warped scan was, by construction, similar to that of the
follow up scan. This method was used in order to ensure that
the artificial warp would result in an image with a realistic
appearance. A sharpening filter (unsharp masking) was applied
to the warped image to negate the smoothing effects of
warping and interpolation. Regions around the edge of the
warped image (outside the lungs) where no data values could
be assigned were cropped away. The scan pair distributed to
the challenge participants in each case consisted of the original
baseline scan and the artificially warped version of this scan.
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Pair Data Category Pair Data Category Pair Data Category
01 Insp-Exp 11 Insp-Insp 21 Insp-Exp
02 Insp-Insp 12 Warped 22 Insp-Insp
03 Insp-Insp 13 4D 23 4D
04 Ovine 14 Insp-Exp 24 Ovine
05 Warped 15 Insp-Insp 25 Warped
06 Contrast 16 4D 26 Contrast
07 Insp-Exp 17 4D 27 Insp-Insp
08 Insp-Exp 18 Insp-Exp 28 Insp-Exp
09 Insp-Insp 19 Insp-Insp 29 Ovine
10 Ovine 20 Insp-Exp 30 Warped

TABLE I
A LISTING OF WHICH CATEGORY OF DATA WAS PROVIDED FOR EACH OF
SCAN PAIRS 01 TO 30. EXPLANATIONS OF THE DATA CATEGORIES ARE

GIVEN IN SECTION II.

The scans were acquired using either Philips Mx8000 IDT
16 or Philips Brilliance 16P scanners. Slice-spacing was 0.70
mm while in-plane pixel spacing varied from 0.66 mm to 0.80
mm with an average value of 0.74 mm.

III. CHALLENGE SETUP

The EMPIRE10 challenge was launched in April 2010
when a large number of researchers involved in the fields of
registration and thoracic CT (as determined by a literature
search) were invited by email to visit the website [19] and
to participate in the challenge. The challenge was also widely
announced on mailing lists. The registration tasks involved
were divided into two phases described below. The two
phases are considered independently in this work since the
circumstances of registering were generally different for each.
The participants were not given any information about the
source or type of data they were registering until after they
had completed the registrations and submitted their results.

• Phase 1: The participants downloaded 20 pairs of thoracic
CT scans (pairs 01-20 in table I) from the 30 pairs
described in section II. These pairs were registered by
the participants in their own facilities, and results in
the form of deformation field images were submitted
to the organisers by June 14th. These registrations were
evaluated (see section IV) and the results were published
on the website [19].

• Phase 2: The participants took part in the Grand Chal-
lenge Workshop [20] at the MICCAI [29] conference in
Beijing on September 24th 2010. During the first 3 hours
of the workshop participants were required to register the
remaining 10 datasets (pairs 21-30 in table I) which had
been password encrypted until that point. Since registra-
tion of such large datasets is technically challenging in
terms of processing power and memory requirements it
was permitted to perform the registrations using remotely
located hardware if required. If a participant was unable
to attend, or unable to complete registration by the end
of the three hours it was permitted to submit results
during the week following. (Note that it was not permitted
to submit partially complete results at the workshop
and supplement these with additional results during the
week following). Algorithms which were run remotely or

whose results were not submitted during the workshop
but rather in the week following are clearly noted in the
results section as well as on the challenge website.

Since September 2010 the EMPIRE10 challenge has entered
a new ongoing phase and remains open to entries from new
participants or to submission of improved results from teams
already involved. In this way we hope that EMPIRE10 will
continue to maintain a record of the state of the art in
registration of thoracic CT. All results published on the website
now are based on the combined set of 30 scan pairs. The
individual sets of results from phase 1 and phase 2 as described
in this article remain on the website but are reported separately
for reference only. Latest results on the combined 30 datasets,
some of which have been recently updated after algorithm
modifications, can be found on the EMPIRE10 website [19].

IV. EVALUATION

Evaluation of registration algorithms was carried out in
four different ways as described in the remainder of this
section. Note that for the EMPIRE10 challenge the image to
be deformed is referred to as the ‘moving image’ while the
reference image is known as the ‘fixed image’.

Participants were asked to declare whether their method
was fully automatic (processed all scan pairs with the same
parameter set), semi-automatic (required different parameters
for different scan pairs), or interactive (required more sig-
nificant user interaction such as manual alignment, defining
corresponding point pairs etc.) and this information is shown
on the challenge website [19] as well as in the results section.

A. Alignment of Lung Boundaries

Aligning the boundaries of the lungs correctly is one of the
most fundamental expectations of a pulmonary CT registration
algorithm. The lung boundary is easily defined in CT in most
regions, with the notable exception of the mediastinal (central)
region. A method of analysing lung boundary registration
was therefore developed for this challenge, which is restricted
to the peripheral regions where the obvious density change
between lung parenchyma and chest wall occurs.

The lungs in all images were segmented using an automatic
algorithm from van Rikxoort et al. [21]. Lung segmentations
were checked and altered manually where necessary. All
further processing described in this section was carried out
fully automatically. The lung boundary defined by the lung
segmentations was extracted and a distance transform image
was generated from the boundary image. The mediastinal
region of the lung boundaries was masked out as follows (see
figure 1): The centre-of-mass of both lungs combined, cMass
was determined. The Euclidean distances from cMass to the
centre-of-mass of the left lung, and to the centre of mass of the
right lung were determined. A sphere centred at cMass and
with a radius defined by the larger of these two distances was
used to identify locations close to the mediastinum. All voxels
within this sphere were excluded from further processing.

Next, points within 20 mm of the lung boundary were
marked in order to define boundary adjacent locations. Points
within 2 mm of the boundary were excluded to allow for
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Fig. 1. A schematic representation of the method to mask out the mediastinal
region as described in section IV-A. The abbreviation C.O.M. refers to the
centre of mass. The shaded region in the diagram is excluded from lung
boundary evaluation due to its proximity to the mediastinum. It is defined
by the sphere centred at cMass and with radius of either ‘distance right’ or
‘distance left’ - whichever is larger.

minor inaccuracies in the lung segmentation. 1 Points inside
and outside the lung boundaries were distinguished using the
lung segmentation image and marked with different values vin
and vout respectively. These markings constituted the reference
standard for checking lung boundary alignment. See figure 2(a)
as an example.

Each participant submitted deformation field data for each
registration carried out. Using this data, it was calculated for
each point pfixed marked with vin or vout in the fixed image,
which point preg in the moving image was aligned with this
location. If pfixed was marked with vin and preg was marked
with vout then a unit penalty was incurred. Similarly the
reverse situation where pfixed was marked with vout and preg
was marked with vin also incurred a unit penalty. Note that
if preg was not marked with either vin or vout (i.e. if it lay
within 2 mm of the boundary, or more than 20mm from the
boundary) then no action was taken.

Error in lung boundary alignment was calculated as the
percentage of points marked with vin or vout which were
registered to points marked as being on the opposite side of
the boundary. This value was given as the overall score in the
lung boundary alignment category. For information, the errors
in the left lung, right lung, upper lung and lower lung were
also calculated and displayed on the participant’s results page
on the challenge website [19].

B. Alignment of Major Fissures

Fissures are plate-like structures which divide the lungs
into regions called lobes. Since fissures represent important
physical boundaries within the lungs their alignment is in-
cluded as an evaluation category in the EMPIRE10 challenge.
To simplify the evaluation, particularly for poor quality data
where minor fissure structures may be difficult to see, we

1This 2 mm margin, mentioned in both sections IV-A and IV-B is chosen as
it is assumed that any segmentation error larger than 2mm could not have been
overlooked during the segmentation checking process. Making the margin
smaller would certainly detect more errors in the registration results, many
of which would be legitimate. However it would also risk penalising some
algorithms unfairly where the error lay with the segmentation and not with
the registration.

evaluate the registration of the major fissures only. Each
lung contains a single major fissure dividing it into an upper
and a lower section. This method of analysis was developed
specifically for use in the EMPIRE10 challenge.

The fissures in all images were segmented using an auto-
matic algorithm from van Rikxoort et al. [30]. Fissure segmen-
tations were checked and altered manually to exclude minor
fissures and any erroneous markings. Gaps in the segmentation
were not always filled so the resulting segmentation may be
incomplete but does not contain any non-fissure structures.
All further processing described in this section was carried
out fully automatically.

A distance transform image was generated from the result-
ing fissure segmentation image. Next, points within 20 mm of
the fissure segmentation were marked, excluding those within
2 mm of the fissure to allow for minor inaccuracies in the
segmentation. Points which were not directly above or below
a fissure voxel (looking in the axial direction) were excluded
in order to prevent the marked regions wrapping around the
edges of the fissure plates (or around gaps in incomplete
fissure segmentations). For each marked point p, the closest
point pfiss on the fissure segmentation was determined. Points
above and below the fissure are distinguished by comparing
the axial components of p and pfiss. Different values, vabove
and vbelow were used to mark points above and below the
fissure respectively. These markings constituted the reference
standard for checking fissural alignment. See figure 2(b) as an
example.

Using the deformation data submitted by the participant,
it was calculated for each point pfixed marked with vabove or
vbelow in the fixed image which point preg in the moving image
was aligned with this location. If pfixed was marked with
vabove and preg was marked with vbelow then a unit penalty
was incurred. Similarly the reverse situation where pfixed was
marked with vbelow and preg was marked with vabove also
incurred a unit penalty. Note that if preg was not marked with
either vin or vout (i.e. if it lay within 2 mm of the boundary,
or more than 20mm from the boundary) then no action was
taken.

Error in fissure alignment was calculated as the percentage
of points marked with vin or vout which were registered to
points marked as being on the opposite side of the boundary.
This value was given as the overall score in the fissure
alignment category. For information, the errors in the left
lung and right lung were also calculated and displayed on
the participant’s results page on the challenge website [19].

C. Correspondence of Annotated Landmark Pairs

Analysis of point correspondence is a commonly used
way to evaluate registration algorithms [31], [13], [32], [33],
[34], [35], [36]. In most cases the set of points is manually
annotated by an expert, resulting in relatively small point sets,
which are frequently clustered in the mediastinal region where
distinctive anatomical points are more easily observed. For the
EMPIRE10 challenge a well-distributed set of 100 distinctive
landmark points was automatically defined in the fixed image
from each scan pair. Each point pfixed was then matched with
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(a)

(b)

Fig. 2. (a) Coronal section of the lung boundary reference standard. The
boundary itself is marked in blue and surrounded by a 2 mm gap on each
side. Regions outside the lung are marked in cyan, and inside the lung are
marked in green. (b) Fissure reference standard. Colour coding is analogous
to that in the left hand image with regions above and below the major fissures
marked in green and cyan respectively.

the corresponding point pmoving in the moving image using a
semi-automatic method. The methods for defining and match-
ing the points are described in Murphy et al. [27], [28]. The
software used is publicly available at http://isimatch.isi.uu.nl.
An example of the point distribution is shown in figure 3(a).
The landmarks are designed to be well dispersed throughout
the lungs and, in most cases, lie in regions of good contrast
(to enable them to be visually matched), typically on the
boundary of vessel and parenchyma. The manual component
of the point-matching procedure allows the user to determine
the match by examination of the point in all three orthogonal
directions and at various zoom levels. A matching point may
be selected or moved at any time. Corresponding points were
marked by either 3 or 4 observers independently (from 7
available observers who worked on this task), and any location

where any pair of observer opinions differed by 3 mm or
more was checked a final time by an observer who could
see all previous annotations on a single screen and accept
or reject each one independently. The observers were all
medical students, except for one radiologist in training. All
observers received instruction, training and practice in this task
before beginning.) The rejected points were not included in
the reference standard, all other points were retained. (If all
annotations for a landmark were rejected the landmark itself
was excluded. For this reason 7 scan pairs were left with
only 99 annotated landmarks and 1 scan pair with 98.) An
example of a landmark with several observer opinions is shown
in figure 4. By accepting more than one observer opinion as
truth, we acknowledge that in most cases it is not possible to
identify a matching point with perfect accuracy. This is related
to many issues such as image quality, voxel size and the partial
volume effect.

The deformation data submitted by each participant was
used to calculate for each of the defined points pfixed in the
fixed image which point preg in the moving image was aligned
with this location. The point preg was then compared (using
Euclidean distance) with the reference standard point pmoving .
Where several acceptable options for pmoving were defined,
the pmoving that was closest to preg was used as the reference.
Note that preg was rounded to the nearest voxel location
before distance calculation. Since all observer marks were
made without sub-voxel accuracy, an algorithm which agrees
precisely with a particular observer may therefore obtain an
error of zero.

The distance d from pmoving to preg was calculated in mm
for each of the annotated point pairs. The overall error in
the landmarks category was given by the average of all the
distances d in the scan-pair. For information, the minimum
distance, the maximum distance, the average distances in the
upper and lower lungs and the average distance in each of
the three orthogonal directions (Anterior-Posterior, Superior-
Inferior and Left-Right) were also calculated and displayed on
the participant’s results page on the website [19].

There are a number of scan pairs that were treated as
special cases in terms of the evaluation using landmark pairs.
For the ovine data the landmark locations were given by the
fiducial markers as described in section II-D and not manually
annotated as for the other data. (Therefore scan pairs 4 and 10
have 67 landmarks each while scan pairs 24 and 29 have 103).
The fiducial markers do not necessarily lie on high contrast
boundaries, see figure 5 as an example.

Furthermore, for the artificially warped data (see sec-
tion II-F) the landmark pairs which were used to specify the
thin-plate-spline model were used as the reference standard
in landmark evaluation, meaning that just one (completely
precise) matching point was available for each landmark
defined.

To demonstrate the level of accuracy of the points which
were annotated using the semi-automatic system described in
[27], [28] the mean and standard deviation of the inter-observer
distances for each of the 22 scan pairs concerned are provided
in table II.
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Pair 01 02 03 06 07 08 09 11 13 14 15 16 17 18 19 20 21 22 23 26 27 28
Mean 1.4 0.2 0.2 0.3 1.2 0.5 0.2 0.3 0.4 1.1 0.2 0.5 0.4 0.9 0.2 1.4 2.2 0.4 0.5 0.2 0.2 1.2
StdDev 1.8 0.5 0.5 0.6 1.4 1.0 0.7 0.7 0.7 1.6 0.5 0.8 0.7 1.3 0.6 1.4 2.3 0.9 0.8 0.5 0.6 1.3

TABLE II
STATISTICS RELATING TO INTER-OBSERVER DISTANCES FOR MATCHING POINT PAIRS WHICH WERE DEFINED USING THE SEMI-AUTOMATIC SYSTEM

DESCRIBED IN [27], [28]. ALL MEASUREMENTS ARE IN MM. THE TOP ROW SHOWS THE PAIR ID, THE SECOND ROW SHOWS THE MEAN OF THE
INTER-OBSERVER DISTANCES AND THE THIRD ROW SHOWS THE STANDARD DEVIATIONS.

D. Singularities in the Deformation Field

The final category of evaluation is designed to analyse
how physically plausible the registration deformation is. Some
registration algorithms may appear to align visible structures
very well, but in doing so may require physically impossible
deformations. In particular we expect that a deformation
should be bijective, i.e. define a one-to-one correspondence
between points in the fixed image and points in the moving
image. Regions where the deformation field is not bijective
are commonly referred to as singularities.

Each participant submitted deformation field data for each
registration carried out. The determinant of the Jacobian of the
deformation field, j, (described well in [37]) was calculated
at every point. This specified for each point whether local
expansion or contraction had taken place. Where j < 1 local
contraction is implied, j = 1 implies no change and j > 1
implies local expansion. Figure 3(b) shows an example of
a colour-coded Jacobian image. All points within the lung
volume were checked and any location where j ≤ 0 was a
singularity in the deformation field. For each such point a unit
penalty was incurred. Points outside the lung volume were
disregarded.

The overall error in the singularities category was given by
the percentage of checked points for which penalties were
incurred. For information, the errors in the left lung, the
right lung, the upper lung and the lower lung were also
calculated and reported on the participant’s results page on
the website [19].

V. SCORING AND RANKING

It should be noted that although every attempt was made
to evaluate algorithm performance as accurately as possible,
there is nonetheless some room for minor errors in evaluation.
For example, very small lung boundary alignment errors will
be overlooked due to the 2mm region on each side of the
lung boundary which we exclude from our evaluation in order
to compensate for any minor lung segmentation errors. In
addition, the corresponding point pairs identified as part of
the reference standard cannot be guaranteed to be completely
accurate - indeed in most cases it is not possible to match
points completely accurately due to the partial volume effect.
However, the scoring system has been designed to be as fair
as possible and we consider that it is reasonable to rank teams
based on these scores. The final rankings are calculated as
follows:

Error scores in the four individual categories are calculated
as described in section IV. A score is awarded to each
participant for each scan-pair in each category (note that

(a)

(b)

Fig. 3. a: An example of the landmark points identified in a fixed scan.
Landmarks have been projected onto a single slice (maximum intensity
projection image is shown here) and markers are increased in size for
visualization. b: A colour coded Jacobian image with the scale going from
-0.5 (red) to 40 (blue). Pixels at or below 0 are singularities.

lower scores always imply better registration). Since these
scores are based on independent measurements of different
concepts there is no obvious way to combine them into a single
participant score. A ranking system was therefore devised in
order to measure a participant’s overall performance and to
compare participants with each other.

The ranking scheme works as follows for a theoretical
group of n participants: The error score of a participant
for scan-pair s and evaluation category c is compared with
the corresponding error score of all other participants. The
participant is then awarded a ranking rsc for that scan-pair
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Fig. 4. An example of differing observer opinions for a landmark in scan
pair 07. The top row shows the landmark identified in the fixed image in
the sagittal (X), coronal (Y) and axial (Z) directions. Subsequent rows show
the points selected by 4 different observers in the moving image. The slice
number is shown with each orthogonal direction. The value µ shown to the
right of each observer opinion is the average distance (in mm) of that point
from other observer choices. The mark at A implies whether the point was
accepted by the final ‘checking’ observer who could see all chosen points.
The point chosen by observer 4 was not accepted and therefore does not form
part of the reference standard.

Fig. 5. A typical example of a landmark in ovine data (scan pair 04). The
top row shows the landmark in the fixed scan in the sagittal (X), coronal (Y)
and axial (Z) directions. The bottom row shows the matching location in the
moving scan. Since these landmarks are based on the locations of fiducial
markers (which have been disguised to hide them in the final images) they
are not necessarily found on high contrast boundaries.

and category. Where all participants have different error scores,
the participant with the lowest error will be ranked 1 while
the participant with the highest error will be ranked n. If
there are ties in some participant scores then the ranks must
be re-arranged such that those participants rank equally. This
is done as follows: Participants with equal scores initially
obtain (randomly assigned) adjacent rankings. Each group of
participants with equal scores is then examined, their ranks
are averaged, and the average rank is assigned to each one of
them. For example, scores of 0.1, 0.5, 0.5, 2 would result in
rankings of 1, 2.5, 2.5, 4.

When all ranks rsc have been assigned for individual scan
pairs and categories they are averaged over all scan pairs to
give each participant an average ranking rc per evaluation
category. (Note that because the average ranking, rc, is based
on the individual rankings, rsc, and not on the average scores,
a linear relationship between the average score and the average
ranking is not to be expected.) Finally the per-category rank-
ings can be averaged over the 4 evaluation categories to give
the participant a final average ranking r. These final rankings
are used to place the participants, with the lowest ranking in
1st place and the highest in nth place. If there is a tie in final

rankings the placement value will be calculated by averaging
in the same way as described above.

VI. CHALLENGE ENTRIES

Phase 1 of the challenge attracted interest from 23 teams
with a combined total of 34 competing algorithms. A team
was permitted to submit more than one algorithm provided
that there was a significant difference between the methods,
beyond a simple alteration of parameters for example.

For phase 2, 6 of these teams (with a total of 9 algorithms)
declined to participate further due to other commitments. The
17 remaining teams (25 algorithms) were able to participate
in phase 2, however due to restrictions on time for processing
during the MICCAI Grand Challenge workshop a number of
teams which had previously entered more than one algorithm
decided to use only their best performing algorithm in phase
2. Ultimately, a total of 20 algorithms from the 17 teams
competed in the second phase.

The remainder of this article deals only with those algo-
rithms which were entered in both phase 1 and phase 2. Please
note that rankings provided in this work for the phase 1 stage
are from a total of 34 participating algorithms, although only
20 of those are being discussed here.

Below is a brief description of each of the 20 algorithms.
The displayed labels A-T will be used to refer to the algorithms
hereafter. For reference the corresponding algorithm name
which is used on the website [19] is given here in brackets
after each label. Appendix A provides explanations for com-
monly used registration related acronyms and abbreviations.
A summary of important information for each algorithm is
given in table III. For a detailed description of a particular
algorithm please refer to the appropriate cited article from the
proceedings of the MICCAI Grand Challenge Workshop [20].

• A (Asclepios1) [38], [39]: An initial block-matching
based affine registration is applied prior to performing a
diffeomorphic demons non-rigid registration. Both steps
use lung masks and work in a multi-resolution manner.
This method ensures that the final transformation is one-
to-one.

• B (Asclepios2) [40], [39]: An affine registration followed
by a non-rigid registration are applied to the scans. Both
methods use lung masks and are based on a pyramidal
block-matching approach. The non-rigid method is cou-
pled with an outlier rejection procedure to improve the
accuracy of the motion estimation.

• C (CMS) [41]: An affine registration is first computed
followed by automatic feature detection and matching.
The matched features are used to guide an MI-based
block-matching image registration, the result of which is
further refined by a hybrid MI/NSSD dense deformable
registration procedure.

• D (DIKU) [42], [43]: A tissue appearance model based on
the principle of preservation of total lung mass throughout
the breathing cycle is proposed. An affine transform using
extracted anatomical information is followed by a series
of B-Spline transforms using mass preserving SSD as a
similarity measure.
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• E (DROP) [44], [45]: After initial pre-alignment, the
dense intensity-based registration is performed using hi-
erarchical FFDs and iterative discrete labeling of MRFs
for the energy minimization. The energy function consists
of the SAD and a first-order smoothness term.

• F (elastix) [46], [47]: A three stage approach is used:
an affine step without masks followed by two non-rigid
stages (B-splines, without and with masks respectively).
The registration is driven by a normalized correlation
metric, and optimized by a parameter free stochastic
gradient descent routine.

• G (ICG LBI Graz Anisotropic Optical Flow) [48], [49]:
An initial rigid registration is performed using the pro-
vided lung masks. Next a multi-scale optical flow model,
consisting of SAD data and a robust Huber-norm based
regularisation term, is solved using a primal-dual opti-
mization algorithm.

• H (IMI Lübeck Diffeomorph) [50], [51]: First a non-
linear surface registration of the lungs is performed. Sub-
sequently, an intensity-based diffeomorphic registration
of the CT data is applied, using demons-like forces and
diffusion regularisation. Diffeomorphisms are parameter-
ized by static velocity fields.

• I (Iowa sstvd ssvmd Laplacian) [52], [53]: A non-rigid
registration algorithm is used to match lung CT images
by preserving both parenchymal tissue volume and ves-
selness measures in the regions of interest defined by the
lung masks. The transformations are represented by B-
splines and regularised using a Laplacian constraint.

• J (ISI@UMCU) [54]: A knowledge model is used to
incorporate statistical information from a landmark refer-
ence set and information obtained by extracting anatomi-
cal structures. This information is combined in a registra-
tion using diffeomorphic demons with a model that can
assign individual regularisers to each of the anatomical
objects.

• K (Lyon FFD) [55]: The lungs are firstly aligned with an
affine registration. Secondly, the interface where sliding
motion occurs is automatically segmented. Finally the
detected interface is used to guide an intensity-based B-
spline registration using mutual information as a similar-
ity measure.

• L (MGH) [56], [57]: The images were masked using the
provided segmentation results, and then translated to align
the masks. Next, a multi-resolution B-spline transform
was optimized with L-BFGS to minimize an SSD cost
function.

• M (Nifty Reggers) [58], [59]: A block-matching tech-
nique was used to perform an initial affine alignment. It
was followed by three non-rigid steps, firstly to coarsely
align the lung features, followed by the borders and
finally the details. The non-rigid registration was based
on a cubic B-Splines model and was driven by the NMI.

• N (Oxford Flow Discontinuity Preserving) [60]: After
a histogram-matching step, a computationally efficient
optical-flow based variational registration is performed
using SAD as a similarity measure. A modified Lp norm
is used for a robust, discontinuity preserving regularisa-

tion of the deformations.
• O (Philips Research) [61]: A fully-automatic, volumetric,

multi-resolution algorithm consisting of (1) an affine
registration step and (2) a non-rigid, non-parametric reg-
istration step. The second step simultaneously minimizes
the SSD and a regularising term based on the Navier-
Lamé operator.

• P (picsl exp) [62], [63]: An affine alignment using lung
masks is performed as a first step. This is followed by a
deformable registration with local NCC as a simililarity
metric and an exponential mapping model. The whole
registration was implemented using the open source Ad-
vanced Normalization Tools (ANTS) software package.

• Q (picsl gsyn) [62], [63]: The registration pipeline begins
with an affine alignment using lung masks, which pre-
cedes greedy symmetric normalization coupled with local
NCC. The whole registration was implemented using
the open source Advanced Normalization Tools (ANTS)
software package.

• R (PVG) [64]: A pre-processing stage is used to subsam-
ple the original image volumes and dilate the lung masks.
The pre-processed volumes are then registered with a B-
spline deformation and by the optimization of a gradient-
orientation based similarity metric.

• S (Robust TreeReg Leuven) [65]: This method is based
on the spline MIRIT algorithm (T). Prior to the dense
registration, vessel bifurcations are detected and matched.
During dense registration, a penalty is added based upon
the distance between these corresponding bifurcations.

• T (Spline MIRIT Leuven) [65]: A B-spline registration is
adopted using MI as similarity measure and L-BFGS-B
as an optimizer. A multi-resolution approach is used in
relation to both the transformation field and the image
size.

VII. RESULTS

A. Phase 1 Results

Table IV gives the scores and ranks for each algorithm in
each of the four categories, averaged over the 20 scan pairs
that were registered. The algorithms are listed in order of their
final placement in this phase. The overall average rank r for
the algorithm, shown in the second last column, defines its
final placement in this phase (last column). Figure 6(a) shows
boxplots2 illustrating the range of the error scores over the 20
scan pairs for each team and each category individually. The
average ranking per category (as shown in table IV) is also
plotted for reference.

B. Phase 2 (Workshop) Results

The scores and ranks for each algorithm in phase 2 are
provided in table V. As with table IV the algorithms are listed

2Boxplots are used to represent the spread of values in a dataset. For all
boxplots in this work the box spans from the 0.25 quantile to the 0.75 quantile
with a horizontal line showing the median of the data. The whiskers are
vertical lines that extend to indicate either the full dataset or the lowest/highest
data point within 1.5 times the interquartile range. In the latter case remaining
data points are plotted as outliers.
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Fig. 6. Boxplots showing the range of scores (errors) obtained in each category for each participant. (a) Phase 1 (20 scan pairs), (b) Phase 2 (10 scan
pairs). Evaluation categories, from top to bottom, are: Lung Boundary Alignment, Fissure Alignment, Landmark Alignment, Singularity Scores. Participant
labels are shown on the X-axis in order (left to right) of their final placement in that phase. The left Y-axis shows the score values. The * symbol at each
boxplot represents the average ranking of the participant in that category, with scales shown on the right Y-axis. Note that the average ranking is based on
the individual rankings per scan-pair and not on the average scores, therefore a linear relationship between average score and average ranking is not to be
expected. Boxplot outliers are denoted by filled circles.
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A Fully 7 Displacement field SSD X 9 10
B Fully 7 Displacement field CC X 17 14
C Fully 7 Dense displacement field Hybrid

MI/SSD
X. 6 1

D Fully 7 B-Spline MPSSD X 20 17
E Fully 7∗† B-Spline SAD 7 19 16
F Fully X∗ B-spline NCC X 7 3
G Fully 7 Optical Flow SAD X 28 19
H Fully 7∗◦ Diffeomorphic with static ve-

locity fields
NSSD X 4 4

I Fully 7 B-Spline SSTVD/
SSVMD

X 3 7

J Fully 7 Diffeomorphic Diffusion NSSD X 16 8
K Fully X B-Spline MI X 14 13
L Semi- (3) X∗ B-Spline SSD X 12 15
M Fully X∗ B-Spline NCC/ NMI X 2 5
N Fully 7 Optical Flow SAD 7 26 17
O Fully 7 Non-parametric / Navier-Lame SSD X 8 6
P Fully X∗ Diffeomorphic (Exponential

mapping)
NCC X 11 9

Q Fully X∗ Diffeomorphic (Symmetric
Normalization)

NCC X 1 2

R Fully 7 B-Spline Adaptive
LMI

X 22 20

S Fully 7 B-Spline MI 7 13 12
T Fully 7 B-Spline MI 7 15 11

TABLE III
SUMMARY OF THE ALGORITHMS ENTERED IN THE EMPIRE10 CHALLENGE. METHODS REQUIRING NO INTERACTION AND USING THE SAME PARAMETERS FOR ALL SCAN

PAIRS ARE MARKED AS ‘FULLY’ AUTOMATIC. METHODS REQUIRING MORE THAN ONE SET OF PARAMETERS FOR THE LIST OF 30 SCAN PAIRS ARE MARKED ‘SEMI-’
AUTOMATIC WITH THE NUMBER OF SETS OF PARAMETERS IN BRACKETS. OPEN SOURCE SYMBOLS: ∗ IMPLIES THAT THE FULL SET OF PARAMETERS USED IS AVAILABLE

EITHER THROUGH THE MICCAI PUBLICATION OR THROUGH THE WEBSITE WHERE THE SOFTWARE CAN BE DOWNLOADED, ENABLING THE READER TO FULLY IMPLEMENT

THE REGISTRATION DESCRIBED. † IMPLIES THAT THE BINARIES ARE AVAILABLE FOR DOWNLOAD ALTHOUGH THE CODE IS NOT OPEN SOURCE. ◦ IMPLIES THAT THE

ALGORITHM IS INTENDED TO BE MADE OPEN SOURCE IN THE NEAR FUTURE. THE ‘LUNG MASKS’ COLUMN INDICATES WHETHER BINARY LUNG SEGMENTATIONS WERE USED

DURING REGISTRATION. . IMPLIES THAT THE LUNG MASKS WERE USED IN PHASE 2 ONLY. ACRONYMS AND ABBREVIATIONS MAY BE FOUND IN APPENDIX A.

in order of their placement in this phase of the challenge.
The scores and ranks shown are averaged over the 10 scan
pairs processed in phase 2. The range of errors over the
10 scan pairs is shown for each team in each category in
figure 6(b). As for the phase 1 data, the average rank for
the category is plotted along with each box plot. Table VI
provides additional important information in relation to the
processing of the last 10 scan pairs. Since the majority (16 of
the 20 algorithms) of registrations were computed during the 3
hour time slot at the MICCAI Grand Challenge Workshop it is
important to make note of which algorithms were run at a later
date (during the week following the workshop). Furthermore
the table details whether the hardware used was on site at
the workshop (laptops only) or remotely at the participant’s
own institute, allowing for the possibility to use much greater
computing power. Information regarding the hardware used by
each algorithm, and the average time taken to process a scan
pair are given. Finally, a number of participants made some
alterations to their algorithms between phase 1 and phase 2.
These were mainly to improve the speed of processing but
occasionally also to improve registration performance. Any
changes made are noted in the rightmost column of table VI.

VIII. DISCUSSION

The high level of interest in the EMPIRE10 challenge
emphasises the fact that non-rigid registration remains a very
active research topic, and that researchers recognise the im-
portance of evaluating their algorithms in a comparable and
objective manner. Our aim in organising this challenge was
not to find the ‘best’ algorithm for the task at hand, but
rather to provide a useful platform for comparison. Although
not all researchers involved are working specifically in the
field of thoracic CT, applying their registration algorithm to
the EMPIRE10 data set enables them to obtain a quantitative
reproducible evaluation which can be updated at any time to
reflect the latest improvements to their method.

The organisation of this challenge has been of great benefit
not only to individual research groups who were able to assess
their algorithm’s performance, but also to the registration
community at large. In the remainder of this section we discuss
the outcome of the challenge and what has been learned
about registration evaluation, about the registration of thoracic
CT in particular and about the state of the art in non-rigid
registration.
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Lung
Boundaries

Fissures Landmarks Singularities Overall

Label Avg
Score

Avg
Rank

Avg
Score

Avg
Rank

Avg
Score

Avg
Rank

Avg
Score

Avg
Rank

Avg
Rank

Placed
(/34)

Q 0.00 6.37 0.03 9.52 0.66 3.20 0.00 13.05 8.03 1
M 0.00 7.62 0.27 12.30 0.75 7.25 0.00 12.52 9.92 2
I 0.00 12.05 0.08 10.97 0.79 6.85 0.00 13.22 10.77 3
H 0.01 11.85 0.22 9.82 0.89 8.22 0.00 14.32 11.05 4
C 0.00 11.60 0.47 14.10 0.91 12.60 0.00 12.52 12.70 6
F 0.00 11.15 0.50 13.62 0.99 7.27 0.02 20.47 13.13 7
O 0.01 12.55 0.56 15.07 1.24 12.10 0.00 13.62 13.33 8
A 0.01 12.02 1.38 15.97 2.47 13.67 0.00 12.52 13.55 9
P 0.00 6.97 0.53 14.35 1.29 14.82 0.00 19.77 13.98 11
L 0.00 12.60 0.26 13.27 1.40 18.45 0.00 12.52 14.21 12
S 0.00 12.87 0.47 14.62 1.43 19.35 0.00 14.10 15.23 13
K 0.00 15.02 0.30 13.70 1.35 19.00 0.00 14.22 15.48 14
T 0.00 13.10 0.49 15.07 1.48 20.29 0.00 14.12 15.65 15
J 0.10 25.50 0.42 11.60 1.12 8.62 0.00 18.77 16.12 16
B 0.29 24.55 0.36 13.32 1.13 17.10 0.00 12.52 16.87 17
E 0.00 12.52 2.48 22.92 3.03 22.30 0.00 12.52 17.56 19
D 0.04 19.07 0.99 18.04 2.19 22.20 0.00 13.30 18.15 20
R 0.09 22.60 0.54 17.82 1.10 10.37 0.09 24.55 18.83 22
N 0.01 19.10 2.48 19.07 2.26 17.00 0.24 29.60 21.19 26
G 0.01 17.77 2.87 19.50 4.56 18.17 3.03 31.67 21.78 28

TABLE IV
RESULTS FROM PHASE 1. THE ALGORITHMS ARE LISTED IN ORDER OF THEIR FINAL PLACEMENT IN THIS PHASE, FROM FIRST TO LAST. SCORES AND

RANKS ARE AVERAGED OVER THE 20 SCAN PAIRS THAT WERE REGISTERED AND ARE ROUNDED TO 2 DECIMAL PLACES. MORE DETAILED INFORMATION
INCLUDING THE PERFORMANCE OF EACH TEAM ON EACH SCAN PAIR CAN BE FOUND ON THE EMPIRE10 WEBSITE [19].

Lung
Boundaries

Fissures Landmarks Singularities Overall

Label Avg
Score

Avg
Rank

Avg
Score

Avg
Rank

Avg
Score

Avg
Rank

Avg
Score

Avg
Rank

Avg
Rank

Placed
(/20)

C 0.00 6.05 0.11 6.25 0.59 2.34 0.00 8.39 5.76 1
Q 0.00 5.70 0.16 5.90 0.65 4.05 0.00 8.39 6.01 2
F 0.00 9.10 0.46 7.65 0.77 3.20 0.00 11.05 7.75 3
H 0.00 8.05 0.61 7.85 1.06 5.70 0.00 9.89 7.87 4
M 0.00 7.05 0.26 8.00 0.88 8.39 0.00 8.39 7.96 5
O 0.00 7.25 0.58 10.35 1.03 9.00 0.00 8.39 8.75 6
I 0.21 7.35 0.52 11.70 5.04 8.10 0.00 8.39 8.88 7
J 0.03 15.75 0.32 7.75 0.72 3.90 0.00 8.39 8.95 8
P 0.00 7.10 0.25 8.45 1.03 9.70 0.00 12.75 9.50 9
A 0.00 8.60 0.95 12.15 2.02 12.30 0.00 8.39 10.36 10
T 0.00 11.85 0.87 9.89 1.44 13.50 0.00 8.39 10.91 11
S 0.00 11.95 0.61 10.20 1.32 13.30 0.00 8.39 10.96 12
K 0.00 11.80 0.89 12.20 1.84 11.00 0.12 10.35 11.33 13
B 0.02 11.80 0.46 11.70 1.30 14.10 0.00 8.39 11.50 14
L 0.06 12.10 1.68 11.15 4.51 13.40 1.62 9.70 11.58 15
E 0.00 7.70 2.23 15.40 2.34 17.00 0.00 8.39 12.12 16
N 0.00 11.80 0.85 10.00 1.08 10.30 0.00 16.65 12.18 17
D 0.05 14.75 1.26 12.50 2.14 15.80 0.00 8.39 12.86 18
G 0.04 14.65 4.94 16.50 6.52 17.79 2.16 19.40 17.08 19
R 1.93 19.60 0.63 14.40 2.61 17.10 1.45 19.40 17.62 20

TABLE V
RESULTS FROM PHASE 2. THE ALGORITHMS ARE LISTED IN ORDER OF THEIR FINAL PLACEMENT IN THIS PHASE, FROM FIRST TO LAST. SCORES AND

RANKS ARE AVERAGED OVER THE 10 SCAN PAIRS THAT WERE REGISTERED AND ARE ROUNDED TO 2 DECIMAL PLACES. MORE DETAILED INFORMATION
INCLUDING THE PERFORMANCE OF EACH TEAM ON EACH SCAN PAIR CAN BE FOUND ON THE EMPIRE10 WEBSITE [19].

A. Categories of Evaluation

As described in section IV the EMPIRE10 challenge made
use of 4 categories of evaluation, each weighted equally in
determining the final placement of an algorithm. Using figure 6
as an illustration we consider the merit of each of these
categories individually.

1) Singularities: Singularity assessment was included to
ensure that registration results represented meaningful and
physically plausible deformations. It can be seen from the
average singularity scores given in tables IV and V as well
as from the singularity score plots in figure 6 that very few of
the algorithms had any significant problem with singularities
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A X X Laptop, Intel Core2 Duo @
2.40GHz, 8GB RAM

2 7 6.3 Multi-resolution scheme
altered to improve speed

B X X Laptop, Intel Core i5 (Quad
core) @ 2.4GHz, 8GB RAM

4 7 9.3 Block-matching within
lungs only to improve
speed

C X 7 HP XW8400, Intel Xeon
Quad-core @ 2.66GHz, 4GB
RAM, NVIDIA GTX 280

4 X 4.5 Added use of the lung
masks to improve align-
ment

D 7 - Intel Xeon X5355, Quad core,
2 processors @ 2.66GHz,
16GB RAM

1 7 112 -

E X X Laptop, Intel Core2 Duo Mo-
bile @ 2.16GHz, 4GB RAM

2 7 1.5 -

F X X Laptop, Intel Core i5 (Quad
core) @ 2.5GHz, 4GB RAM

1 7 18 -

G 7 - Intel Xeon E5540 (Quad core)
@ 2.53GHz, Nvidia Tesla
C1060, 4GB RAM

4 X 4 Parameter changes

H X X Intel Xeon (Quad core) @
2.67GHz, 16GB RAM

4 7 9 Multi-threading / CUDA
used in pre-registration
step

I X 7 Dual processor Intel Xeon
E5520 (Quad core) @
2.27GHz, 48GB RAM

16 7 77 B-Spline interpolation
method altered

J X 7 Intel QuadCore @ 2.66GHz,
8GB RAM

4 7 15 -

K X 7 Dual processor Intel Xeon
(Quad-core) L5430 @
2.66GHz, 16GB RAM

8 7 45 B-spline grid resolution
altered

L X X Laptop, Intel Centrino Dual
Core Duo T7500 @ 2.2GHz,
2GB RAM

2 7 9 Parameter changes (2
pairs)

M X X Laptop, Intel Core i7 Q720 @
1.6GHz, 8GB RAM, NVidia
Quadro FX 2800m

1 X 5.5 -

N X X Laptop Intel Duo Core @ 2.4
GHz, 4 GB RAM

2 7 10 histogram matching step
added

O X X Laptop Intel Core2 Duo @
2.66 GHz, 3.5GB RAM

1 7 16 Stopping criterion added

P 7 - Intel Xeon E5450 2-core @
3GHz, 16GB RAM

1 7 230 -

Q X 7 Intel Xeon E5450 2-core @
3GHz, 16GB RAM

2 7 69 Multi-threading added

R 7 - Dual processor Intel Q6700
(Quad-core) @ 2.66GHz,
8GB RAM

8 7 40 Multi-resolution scheme
altered to improve speed

S X 7 Dual processor dual-core
AMD Opteron 2220 @ 2.8
GHz, 32 GB RAM

1 7 115 Stopping criterion added

T X 7 Dual processor dual-core
AMD Opteron 2220 @ 2.8
GHz, 32 GB RAM

1 7 105 Stopping criterion added

TABLE VI
INFORMATION RELATING TO THE PROCESSING FOR PHASE 2 (WORKSHOP

AT MICCAI) FOR EACH ALGORITHM. THE SECOND AND THIRD COLUMNS
IMPLY WHETHER THE PROCESSING WAS DONE DURING THE MORNING OF

THE WORKSHOP (OR IN THE WEEK FOLLOWING) AND WHETHER THE
PARTICIPANT USED ON-SITE (OR REMOTELY LOCATED) HARDWARE IF SO.
COLUMNS 5, 6, AND 7 LIST HOW MANY CORES WERE USED IN PARALLEL
TO PERFORM EACH REGISTRATION, WHETHER OR NOT GPU PROCESSING

WAS USED, AND HOW LONG EACH REGISTRATION TOOK ON AVERAGE.
THE LAST COLUMN LISTS ANY ALGORITHM OR PARAMETER CHANGES

MADE BY THE PARTICIPANT BETWEEN PHASE 1 AND PHASE 2.

in their deformations. In fact, many of them incorporated
regularisation steps specifically to avoid any such issues. In
each phase of the challenge, only 4 algorithms out of 20 had
average singularity scores above 0 when rounded to 2 decimal

places. The worst average singularity score obtained by an
algorithm (in either phase) was 3.03, meaning that on average
3.03% of the voxel locations within the lung volume were
penalised for having implausible deformations.

Although it is important to ensure that registration results
are physically plausible, this evaluation category was, in
general, not very useful in distinguishing between algorithms.
In addition the ranking system used was somewhat unsuited
to handling such negligible differences between algorithm
scores. In figure 6(b), for example, it can be seen that while
a perfect score of 0% in the singularity category generated
a singularity ranking of 8.4, algorithm F received a ranking
of 11.05 with an average singularity score of just 0.0002%
(unrounded figures may be obtained on the algorithm’s results
page on the challenge website [19]). A very minor error
could therefore have a disproportionate effect on the algorithm
ranking.

2) Lung Boundary Alignment: In thoracic CT the lung
boundary is among the most easily recognised high contrast
regions and should therefore be relatively easy to align.
Furthermore, in the EMPIRE10 challenge the participants were
provided with lung masks which many teams used to assist
their methods with aligning the lung boundaries correctly in
the initial stages of registration. However, it may be envisaged
that an algorithm spending a lot of effort on aligning internal
structures such as vessels might inadvertently result in poorly
aligned lung boundaries. In figure 6(b), for example, it can be
seen that algorithm J performs very well in all categories with
the exception of lung boundary alignment. More generally
however, the majority of algorithms are well adapted to
aligning the lung boundaries and figure 6 illustrates that in
most cases the error is close to zero for all scan pairs. Of the
20 participating algorithms, 11 in phase 1 and 13 in phase 2
had zero error in this category when rounded to two decimal
places (see tables IV and V).

3) Fissure Alignment: Fissure alignment was included as
an evaluation category for three main reasons. Firstly, the
fissures form important physical boundaries within the lungs,
and therefore any algorithm which would be intended for
use in a clinical application should be able to align them
accurately. Secondly, the fissures are frequently difficult to
register or even to detect, and therefore present an interesting
challenge. Finally, the points used in the landmark category
are rarely located on fissures so their alignment is not well
evaluated in that category. Fissures are plate-like structures
which are very narrow in one direction, and with the partial
volume effect they are often comparatively low-contrast or, in
poor quality data, partially obliterated by noise. Figure 7(a)
shows an example of a fissure in an ultra-low-dose expiration
scan that is moderately difficult to identify.

Tables IV and V and figure 6 show that there is much more
variance in algorithm scores in the fissure alignment category
than in either singularity or lung boundary categories. They
are, therefore, useful for providing some distinction between
algorithms where singularity scores and lung boundary scores
may have been uniformly good. It can be seen in figure 6(a)
that algorithm A, for example, performs extremely well in the
singularities category and quite well also in the lung boundary
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(a) (b)

Fig. 7. (a) An example of a fissure as seen in an ultra low-dose expiration scan
(fixed scan, pair 21). Although the fissure is visible in this scan, it has very
low contrast and the image noise makes it more difficult to identify. The lower
images show an enlarged view of the fissure and the same enlarged view with
the fissure highlighted in red. (b) The deformed moving image showing the
same slice as in figure a. Above: For the algorithm performing best on fissures
for this scan pair (algorithm Q). Below: For the algorithm performing worst on
fissures for this scan pair (algorithm G) (Note that the black region to the top
left of this image implies only that deformation information was not supplied
for that area since it is beyond the region of interest). The fissure reference
standard is overlaid on both images. Red colouring is used to indicate locations
where a penalty for fissure misalignment was incurred. The enlarged regions
show that algorithm Q has deformed the fissure to the location specified by the
reference standard whereas no fissure is visible in this region in the deformed
image from algorithm G.

alignment category, with just a few close outliers. However
in the fissure alignment category, although the median error
remains close to zero, there are quite a few scan pairs for
which performance was considerably worse, resulting in an
extended boxplot and several distant outliers. In phase 2
most of the algorithms performed extremely well in terms
of both singularities and lung boundary alignment, however
differences are much more apparent in the fissure alignment
category (see figure 6(b)). Examples of fissure alignment in
scan pair 21 are shown in figure 7(b) for the algorithms which
performed best and worst on fissures in this scan pair. This
figure illustrates how penalties are incurred by the algorithm
which failed to align the fissure correctly.

4) Landmark Alignment: Landmarks were included in the
evaluation to give an insight into the ability of the algorithm
to align small structures throughout the lung volume. Figure 6
illustrates that the landmark category was the best at distin-
guishing between registration results. The median values and
box plot sizes are much more varied in this category than

in any other, both for phase 1 and phase 2. Figure 8 shows
a sample landmark from scan pair 21. The top row shows
the landmark in the fixed scan, and three accepted observer
opinions for the matching location in the moving scan. Sub-
sequent rows show the matching location selected by each
algorithm and its distance, d, to the closest observer choice.
The distance values vary from 0 mm (perfect agreement with
one of the observers) up to 67.1 mm. In fact scan pair 21
was one of the most difficult scan pairs to register due to a
very large deformation between the inspiration and expiration
scans, resulting in this diversity in algorithm results.

A total of 8 scan pairs were considered as special cases in
terms of landmark evaluation since the point correspondence
was not manually defined but known absolutely. These con-
sisted of 4 scan pairs in which the images were related by
artificial warping, and 4 scan pairs from ovine data where
fiducial marker locations were known. Figure 9 compares
average landmark error per participant for scan pairs where
landmarks were manually annotated (x-axis) with landmark
error on the warped and ovine cases (y-axis) respectively.
In both scatter plots there is a reasonably good correlation
(r=0.68 and r=0.75) between the average error scores, indi-
cating that, generally speaking, algorithms which perform well
on the artificial/fiducial data tend to perform well also on the
manually annotated data. However the slopes, m of the lines
fitted by least-squares reveal a disadvantage to the artificially
warped data in particular. For the warped data the slope is
0.17, indicating that algorithms tend to have a very much lower
average error value on the artificially warped data than on the
manually annotated data. In the case of the ovine scans with
fiducial markers, the slope of the line m=0.66 indicates that
while the general trend is for a lower error in the ovine data
compared to the manually annotated data, the distinction is
much less obvious than in the case of the warped data. In fact it
may be expected that the error in the manually annotated pairs
would be slightly higher since these include the most difficult
category of inspiration-expiration pairs (see section VIII-B).
We conclude that the artificially warped data can be useful
for comparison of performance between algorithms but it is
not suitable for determining the actual accuracy that might be
expected of an algorithm on real data. The fiducial markers,
on the other hand, are useful both for comparing performance
of algorithms and also in determining actual accuracy levels.

Based on the landmark category results from the best
performing algorithms given in tables IV and V it may be
suggested that there is very little room for improvement with
average errors approximately equivalent to slice thickness be-
ing reported. However, although the average landmark distance
over all scan pairs is excellent for these algorithms, the maxi-
mum landmark distance in each scan pair may not be so good,
implying that there are small regions in the scan where align-
ment is incorrect. Table VII shows the maximum landmark
distance d per scan pair in phase 2 for the best 3 algorithms
in that phase (maximum distances for each algorithm and scan
pair are available through the website results pages [19]). The
overall average landmark score for each algorithm is shown in
the last column for comparison. It can be seen that although
an algorithm may have an excellent overall landmark score,
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Fig. 8. A sample landmark point from scan pair 21. Top left: The location in the fixed scan and 3 (accepted) observer opinions about the matching location
in the moving scan. The remaining images show the matching point chosen by each algorithm along with the distance d to the nearest observer chosen match.
This particular landmark is shown because of the variety in the algorithm results due to scan pair 21 being among the most difficult data sets provided. All
images shown are in the coronal direction.
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Fig. 9. Scatterplots representing average landmark error, davg , in manually
annotated cases compared to (a) cases where annotations were known due
to artificial warping and (b) cases where annotations were given by fiducial
marker locations in ovine data. Each plotted point corresponds to a participant.
The x-axis value is the average of the landmark error scores, davg in the 22
manually annotated cases. The y-axis value is the average of the landmark
error scores, davg in (a) 4 artificially warped cases and (b) 4 ovine data
(fiducial markers) cases. The values r and m shown are, respectively, the
correlation coefficient for the data and the slope of the line fitted by least
squares.

there are still some landmarks in particular scan pairs which
are not well aligned. Figure 10 shows an example of this
for algorithm C and scan pair 28. The landmark where the
algorithm performed worst (d = 15.05mm) is shown in this
image, along with the point incorrectly chosen by algorithm
C. It can be seen that although the majority of the scan is well
aligned, there is a small region around this landmark where
alignment is poor.

Pair 21 22 23 24 25 26 27 28 29 30
Algorithm [Avg]

C 6.04 6.53 2.86 4.67 1.23 1.65 1.28 15.05 8.87 0.00 [0.59]
Q 7.48 6.20 2.86 5.24 1.23 1.65 1.28 13.68 8.64 0.00 [0.65]
F 13.66 6.53 2.68 3.76 0.00 1.65 1.28 20.97 6.38 0.00 [0.77]

TABLE VII
THE MAXIMUM LANDMARK DISTANCE d PER SCAN-PAIR IN PHASE 2 FOR
THE BEST 3 ALGORITHMS IN THAT PHASE. ALL DISTANCES ARE IN MM.
THE LAST COLUMN SHOWS THE AVERAGE LANDMARK DISTANCE OVER

ALL SCAN PAIRS (AS PER TABLE V) ILLUSTRATING THAT ALTHOUGH THE
OVERALL AVERAGE MAY BE VERY LOW THERE ARE STILL SOME

LANDMARKS IN SOME SCAN PAIRS WHICH ARE NOT WELL ALIGNED.

To further illustrate this point, figure 11 demonstrates the
difference in performance when considering averages (i.e.
overall landmark scores) compared to considering actual land-
mark distances with no averaging. In figure 11(a) the overall
landmark scores (averages) are plotted, firstly with a maximum
value of 5 on the y-axis, and secondly with the full range
of y-values shown. (Note that the upper image in 11(a) is
identical to the landmark image in figure 6(a)). In figure 11(b)
all landmark error values are plotted individually without
averaging over scan pairs. This shows a much larger number
of outliers with a maximum outlier value of 53 mm. The
method of averaging to achieve a final score per scan-pair,
while convenient for comparison purposes, can be deceptive
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Fig. 10. A landmark in scan pair 28 which was incorrectly aligned by
algorithm C. The top row shows the original landmark, the point chosen by
an observer in the moving scan (closest observer point to algorithm C choice),
and the point chosen by algorithm C in the moving scan, which was 15.05
mm away from the closest observer mark. The images in the second row show
the fixed scan and the deformed moving scan according to algorithm C. The
deformed scan aligns well with the fixed image in most locations, but close
to the landmark (circled) the alignment is incorrect.
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Fig. 11. (a) Boxplots showing the average landmark error per participant,
where each value used is the average for a scan pair (20 values per plot).
Shown with the y-axis range of [0-5] (above) and with the full range of
y-axis values [0-18] (below). (b) Boxplots of the actual landmark errors
per participant without averaging over each scan-pair first (1930 values per
plot). Shown with the y-axis range of [0-5] (above) and the full range of
y-axis values [0-53] (below). All data is from phase 1 of the challenge and
participants are arranged in order of their placement in that phase.

when considering the individual performance of an algorithm.
We can therefore conclude that even the best performing
algorithms, although their average results are excellent, have
some room for improvement in more difficult regions.
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Fig. 12. Boxplots showing the landmark error per participant where the
closest observer annotation was considered as the reference standard (light
grey), and in contrast, the landmark error per participant if the farthest
observer annotation had been considered as the reference standard (dark grey).
All data is from phase 1 of the challenge and participants are arranged in order
of their placement in that phase. Note that not the full range of data is shown.

Another issue to note is our choice to consider the observer
point closest to the algorithm’s location as the reference
standard. In this way, if several observers have made different
annotations, we opt to give the benefit of the doubt to the
algorithm being evaluated. Since there can be a difference
in the order of a few millimetres between observer marks it
would be expected that all algorithms would disimprove in
performance if we chose to define the reference standard in a
different way. Figure 12 illustrates this point by showing the
performance of algorithms according to the current reference
standard compared with their performance if we use the
farthest observer annotation as the reference standard. Since
all observers are treated as equally correct this method of
evaluation is just as valid as the method which is currently
used. However it can be seen that performance is decreased,
relatively severely in some cases, with median error values
over the 20 scan pairs increasing by up to 0.5 mm and results
at the upper whisker of the box plot increasing by several
millimetres in some cases.

It must therefore be concluded that we confer some advan-
tage to the performance of the algorithms in the landmark
category by always using the closest observer point, and that
actual performance may be somewhat poorer than reported.
To fully resolve this issue however, would require knowledge
of a single correct correspondence for every landmark, which
in most cases is not feasible to determine.

B. Categories of thoracic CT data

As described in section II the thoracic CT pairs provided for
the EMPIRE10 challenge came from a number of sources and
had widely varying characteristics. The data was divided into
6 categories as follows: Inspiration-Expiration pairs (breath-
hold), Inspiration-Inspiration pairs (breath-hold), pairs from
4D data sets, ovine data, artificially warped data and contrast-
enhanced data.

Figure 13 shows the range of landmark error values obtained
by the various algorithms for each scan pair, grouping the
scan pairs into their data categories. The first category shown,
inspiration-expiration was clearly the most difficult type of
data. This category of data requires the largest deformations to
resolve the registration since there is typically a considerable
difference in lung volume between breath-hold inspiration and
breath-hold expiration. A second contributary factor in the
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difficulty with registering these cases may be the ultra-low-
dose protocol used in acquiring the expiration scans. This
results in noisier data and since the inspiration scans are
somewhat better quality, there may be small structures visible
at inspiration which are not easy to detect in the expiration
scan. Figure 13 shows that there is quite some variation within
the inspiration-expiration category, with scan pair 08 being
relatively easy to register and scan pair 21 being the most
difficult. This variation is to be expected as the amount of
deformation is very dependent on the subject’s health and
ability to breathe deeply as well as their regard for the
instructions given during scanning. Furthermore scan quality
varies depending on many factors such as the weight of the
subject, movement during scanning etc.

The second most difficult data category appears to be the
ovine data, although it is closely followed by the 4D and
inspiration-inspiration pairs. The ovine data does not exhibit
large deformations so is not expected to be particularly difficult
to register. In some cases algorithms may have been tested and
tuned on human data, and be less suited to this data type as a
result. However, another likely cause for the larger landmark
errors in these cases is the nature of the landmarks themselves.
Since these landmarks are based on fiducial markers, and
are not necessarily located on high contrast boundaries (see
figure 5) there is less structure around them to guide the
registration. Testing the algorithm behaviour at points that do
not incorporate high contrast structures is likely to result in a
drop in performance. Ideally, landmarks should be distributed
throughout the parenchyma without regard to the structure or
lack thereof, however in practice it is extremely difficult for a
human observer to match points in low contrast regions with
any degree of accuracy. Reference standards including low-
contrast landmarks are therefore difficult to obtain.

The inspiration-inspiration and 4D data categories are ap-
proximately similar in terms of difficulty in registration. There
is more variation among the inspiration-inspiration pairs, prob-
ably depending on whether the patient succeeded in the same
level of breath-hold in both scans (taken several months apart),
and whether precisely the same scanner settings were used.
In the 4D category, one of the challenges for registration
algorithms is to remain robust to artifacts, which are more
commonly encountered in this type of data.

The artificially warped data provided relatively little chal-
lenge in most cases. Since the task was simply to resolve a
thin-plate-spline warp, rather than the much more complicated
motion associated with breathing, most algorithms performed
well, in fact many algorithms obtained zero landmark error on
these pairs. Similarly for the data pairs including a contrast-
enhanced image, performance was very good. The contrast
material did not present any difficulties, and since the scans
were taken just 30 seconds apart there was virtually no motion
to resolve.

C. Registration Algorithms Analysis

The competing algorithms in EMPIRE10 include a wide
variety of registration types (transformation models, similarity
measures etc.) as well as a selection of algorithms tailored
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Fig. 13. Boxplots showing the landmark error per scan-pair for the range of
participants. Outliers are denoted by filled circles (not the full range of data
is shown). Scan pairs are grouped according to the type of data represented.

towards thoracic CT applications and completely generic reg-
istration algorithms. All methods are fully automatic with
the exception of one, (algorithm L) where parameters were
manually altered for a few of the scan pairs. Many algorithms
performed extremely well on many scan pairs and there is
very little to choose between them. From table IV it can
be seen that the top 6 algorithms all have average landmark
distance scores of less than 1 mm, with a range from 0.66 mm
to 0.99 mm. In phase 2, (see table V), the landmark scores
for the top 6 algorithms ranged between 0.59 mm and 1.06
mm. When it is considered that locations are rounded to the
nearest voxel before distance is determined and slice thickness
is typically around 0.7 mm, these are extremely good results
in spite of the errors remaining in some regions as described
in section VIII-A4.

Considering the 5 algorithms which reached the top 3
in either phase 1 or phase 2 (algorithms C, F, I, M, Q),
only 1 of these (algorithm I) was designed specifically for
registration of thoracic CT data. In this case the similarity
measures used included information about the tissue density
between breathing phases and the ‘vesselness’ measure at each
location. The remaining 4 algorithms are all generic regis-
tration methods which were applied to the EMPIRE10 data
sets with appropriate parameter settings. It may be surmised,
therefore, that at the present time and for this set of data,
generic registration algorithms can perform just as well as, or
better than, data specific methods. It may still be the case that
combining aspects of both could improve performance even
further, particularly on more difficult scan pairs.

The transformation models included among these 5 algo-
rithms are B-Spline (three times), dense displacement field
and a diffeomorphic transformation. Similarity measures are
various forms of NCC, MI or SSD, with lung specific measures
(SSTVD, SSVMD) used by algorithm I. These algorithm
profiles are not notably different from others which performed
less well in the challenge, therefore it may be concluded that
the good performance of these methods is due to other more
specific elements of the individual algorithms. It cannot be
concluded that there is a single category of registration method
which performs best on this type of data.

Since registration is evaluated only on the lung volume it
seems logical that better results should be obtained by avoiding
efforts to register structures outside the lungs. In fact, deforma-
tions in external regions may negatively impact the alignment
of structures within the lung volume. Of the 20 participating
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algorithms, 16 of them, including the best performing methods
among them, make use of lung segmentation masks in some
way during registration (see table III). Algorithm C did not use
the lung mask information during phase 1, but added a step to
make use of it during phase 2 (see table VI). The improvement
in its ranking from 6th place in phase 1 to 1st place in phase
2 is likely to be largely attributable to this alteration. Overall
we conclude that the use of lung masks is to be recommended
for optimal performance in registration of the lung volumes.

Regarding algorithm speed it is difficult to make generalisa-
tions since participants used their own hardware, which varied
greatly (see table VI) and since not all algorithms are designed
and programmed for optimal efficiency. With re-programming
and better hardware the average time per scan pair might be
very different for many methods. However, one point to note is
that there is no evident trend of the best performing algorithms
being the slowest. For example, algorithm C, which took
first place in phase 2 of the challenge, took just 4.5 minutes
per scan pair which was the third fastest of all algorithms.
Therefore, there is every reason to be optimistic that excellent
registration performance and efficiency which is acceptable in
a clinical setting are not mutually exclusive traits.

D. Future Work

The EMPIRE10 challenge remains open to new or improved
entries, thereby continually monitoring the current state of the
art in registration of thoracic CT. In section VIII-A4 it was
noted that although some of the best performing algorithms
achieve excellent average landmark error scores, they still fail
to align small regions of some scan pairs correctly. It is hoped
that registration performance will continue to improve in the
future, enabling correct alignment of these more difficult areas.

In spite of these outstanding issues, the standard of reg-
istration in the EMPIRE10 challenge is generally very high
and there are some extremely accurate algorithms included
among the participants. Depending on the clinical application
in question, some of these may already be sufficiently good
to aid medical personnel in their daily work. Additional
challenges lie ahead in optimising the speed of algorithms to
make them practical for use in a clinical setting, as well as
embedding them into the workstations and daily routines of
clinicians. Furthermore, while the current aim is to describe
the patient motion in terms of the external coordinate system,
an extremely interesting extension for the future would be to
describe the breathing motion in terms of the patient’s own
coordinate system - a problem which is, as yet, relatively
poorly defined [7]. However discussion of these objectives is
beyond the scope of this work.

IX. CONCLUSION

The EMPIRE10 challenge has enabled detailed, indepen-
dent and fair evaluation of non-rigid registration algorithms.
Although the common data set was composed of intra-patient
thoracic CT image pairs, generic algorithms which were not
tailored for this data performed extremely well and many dif-
ferent approaches to registration were shown to be successful.

The inspiration/expiration scan pairs proved to be the most dif-
ficult to register accurately because of the large deformations
present. Among the most noteworthy conclusions reached
in section VIII is that corresponding landmarks provide the
most useful reference standard for distinguishing between
registration algorithm results. Although such landmarks are
typically tedious to obtain, a semi-automatic system [27], [28]
for defining them was used in this work. It was also determined
that the use of artificial warping as an evaluation method is
beneficial in distinguishing between different algorithms, but
not in providing a true evaluation of a particular algorithm’s
accuracy. Analysis based on fiducial markers in ovine images,
however, was shown to give a good representation of algorithm
accuracy as well as a means of comparing different methods.

The results of this challenge represent an important step
forward, both for the non-rigid registration community and for
those involved in bringing automatic processing into clinical
practice. Researchers in registration may now evaluate their
algorithms, and any methodological improvements applied to
them, in a quantitative independent way. In addition, the state
of the art in registration of thoracic CT has been established
for the first time, enabling a logical analysis of what is required
in the future to bring registration into the clinic.
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Léon Bérard Cancer Center and CREATIS lab, Lyon, France.
Datasets 13, 16 and 23 are courtesy of the Department of
Radiation Oncology, Stanford University School of Medicine
and Philips Research.

APPENDIX
ACRONYMS AND ABBREVIATIONS

• CC: Correlation Coefficient
• CUDA: Compute Unified Device Architecture
• FFD: Free Form Deformation
• L-BFGS (and the variant L-BFGS-B): Limited memory

BFGS (Broyden Fletcher Goldfarb Shanno)
• LMI: Local Mutual Information
• MI: Mutual Information
• MPSSD: Mass Preserving Sum of Squared Differences
• MRF: Markov Random Field
• NCC: Normalised Cross Correlation
• NMI: Normalised Mutual Information
• NSSD: Normalised Sum of Squared Differences
• SAD: Sum of Absolute Differences
• SSD: Sum of Squared Differences
• SSTVD: Sum of Squared Tissue Volume Difference
• SSVMD: Sum of Squared Vessel Measurement Differ-

ence
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