Study of jets produced in association with a W boson in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration*
(Dated: January 24, 2012)

We report a study of final states containing a W boson and hadronic jets, produced in proton-proton collisions at a center-of-mass energy of 7 TeV. The data were collected with the ATLAS detector at the CERN LHC and comprise the full 2010 data sample of 36 pb$^{-1}$. Cross sections are determined using both the electron and muon decay modes of the W boson and are presented as a function of inclusive jet multiplicity, N_{jet}, for up to five jets. At each multiplicity, cross sections are presented as a function of jet transverse momentum, the scalar sum of the transverse momenta of the charged lepton, missing transverse momentum, and all jets, the invariant mass spectra of jets, and the rapidity distributions of various combinations of leptons and final-state jets. The results, corrected for all detector effects and for all backgrounds such as diboson and top quark pair production, are compared with particle-level predictions from perturbative QCD. Leading-order multiparton event generators, normalized to the NNLO total cross section for inclusive W-boson production, describe the data reasonably well for all measured inclusive jet multiplicities. Next-to-leading-order calculations from MCFM, studied here for $N_{\text{jet}} \leq 4$, and BLACKHAT-SHERPA, studied here for $N_{\text{jet}} \leq 4$, are found to be mostly in good agreement with the data.

PACS numbers: 12.38.Qk, 13.85.Hd, 13.85.Qk, 13.87.Ce

I. INTRODUCTION

The study of massive vector boson production in association with one or more jets is an important test of quantum chromodynamics (QCD). These final states are also a significant background to studies of Standard Model processes such as $t\bar{t}$, diboson, and single-top production, as well as to searches for the Higgs boson and for physics beyond the Standard Model. Thus, measurements of the cross section and kinematic properties, and comparisons with theoretical predictions, are of significant interest. Measurements of $W+\text{jets}$ production in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV have been reported by the CDF and D0 Collaborations [1, 2] and for $\sqrt{s} = 7$ TeV proton-proton collisions by the CMS Collaboration [3]. Measurements of jets produced in association with a Z boson were also performed using $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV [4–6] and pp collisions at $\sqrt{s} = 7$ TeV [3, 7]. The study presented here is complementary to the measurement of the transverse momentum distribution of W bosons conducted by the ATLAS Collaboration [8].

This paper reports a measurement at the CERN Large Hadron Collider (LHC) of the $W+\text{jets}$ cross section for proton-antiproton (pp) collisions at a center-of-mass energy (\sqrt{s}) of 7 TeV, using the ATLAS detector. The measurement is based on the full 2010 data sample, corresponding to an integrated luminosity of approximately 36 pb$^{-1}$. It is an extension of an earlier ATLAS measurement of both the electron and muon decay modes of the W boson based on 1.3 pb$^{-1}$ [9]. Compared to the earlier result, uncertainties in both the jet energy scale and luminosity are reduced, acceptance for the jets is expanded, and event reconstruction and simulation are improved. The improved reconstruction brings better alignment of the detector systems and reduction of backgrounds in the electron channel.

The results have been corrected for all known detector effects and are quoted in a specific range of jet and lepton kinematics, fully covered by the detector acceptance. This avoids model-dependent extrapolations and facilitates comparisons with theoretical predictions. Theoretical calculations at next-to-leading order (NLO) in perturbative QCD (pQCD) have been computed inclusively for up to four jets [10, 11] and are compared with the data.

II. THE ATLAS DETECTOR

ATLAS uses a right-handed coordinate system with its origin at the nominal pp interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The z-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln\tan(\theta/2)$ and the rapidity is defined as $y = \ln[(E + p_T)/(E - p_T)]/2$. The separation between final state particles is defined as $\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2}$ and is Lorentz invariant under boosts along the z-axis.

The ATLAS detector [12, 13] consists of an inner tracking system (inner detector, or ID) surrounded by a thin superconducting solenoid providing a 2T mag-
netic field, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS). The ID consists of pixel and silicon microstrip detectors, surrounded by a transition radiation tracker. The electromagnetic calorimeter is a liquid-argon and lead detector, split into barrel \((|\eta| < 1.475)\) and endcap \((1.375 < |\eta| < 3.2)\) regions. Hadron calorimetry is based on two different detector technologies. The barrel \((|\eta| < 0.8)\) and extended barrel \((0.8 < |\eta| < 1.7)\) calorimeters are composed of scintillator and steel, while the hadronic endcap calorimeters \((1.5 < |\eta| < 3.2)\) utilize liquid-argon and copper. The forward calorimeters \((3.1 < |\eta| < 4.9)\) are instrumented with liquid-argon/copper and liquid-argon/tungsten, providing electromagnetic and hadronic energy measurements, respectively. The MS is based on three large superconducting toroids arranged with an eight-fold azimuthal coil symmetry around the calorimeters, and a system of three stations of chambers for triggering and for precise track measurements.

III. DATA AND ONLINE EVENT SELECTION

The data for this analysis were collected during LHC operation in 2010 with proton-proton interactions at a center-of-mass energy of 7 TeV. The collisions occurred within pairs of bunches of up to \(\sim 1.1 \times 10^{11}\) protons per bunch. The bunches were configured in trains with a time separation between bunches of 150 ns and a longer separation between trains. Data were collected with up to 348 colliding bunch pairs per beam revolution. This configuration led to a peak instantaneous luminosity of up to \(2.1 \times 10^{32}\) cm\(^{-2}\)s\(^{-1}\) that corresponds to an average of 3.8 inelastic collisions per bunch crossing. Typical values were lower as the luminosity degraded during the data taking fills which lasted up to 20 hours. On average, the data contain 2.1 inelastic collisions per bunch crossing.

Application of beam, detector, and data-quality requirements resulted in a total integrated luminosity of 36 pb\(^{-1}\). The uncertainty on the luminosity is 3.4\% [14, 15]. The integrated luminosities for the data samples associated with the electron and muon decay modes of the W boson were calculated separately and differ by 1.7\%.

Events were selected online if they satisfied either the electron or muon criteria described below. Criteria for electron and muon identification, as well as for event selection, followed closely those of the previous 1.3 pb\(^{-1}\) W+jets cross section analysis [9].

For this analysis, the following kinematic requirements were imposed on events in order to enter the selected sample:

- \(p_T^{\ell} > 20\) GeV (\(\ell = \text{electron or muon}\)),
- \(|\eta| < 2.47\) (except \(1.37 < |\eta| < 1.52\) or \(|\eta| < 2.4\)),
- \(E_T^{\text{miss}} > 25\) GeV (missing transverse momentum),
- \(m_T(W) > 40\) GeV,
- \(p_T^{\ell} > 30\) GeV,
- \(|y| < 4.4\) and \(\Delta R(\ell, \text{jet}) > 0.5\).

These selection criteria differ slightly from the fiducial acceptance to which measured cross sections are finally corrected, which is described in Section V.F. The transverse momenta of the leptons and neutrinos from \(W \rightarrow e\nu\) and \(W \rightarrow \mu\nu\) decays are denoted as \(p_T^e\) and \(p_T^\mu\), respectively. The transverse momentum of the neutrino is determined as \(E_T^{\text{miss}}\), the missing transverse momentum, from the requirement that the total transverse momentum of all final-state particles is a zero vector. The calculation of \(E_T^{\text{miss}}\) and the transverse mass of the \(W, m_T(W)\), are discussed later in Section V.B.

All measured cross sections are corrected for any detection losses within these regions. The lower bound \(p_T^{\ell} > 20\) GeV is chosen to facilitate validation of the QCD description in Monte Carlo generators and future theoretical developments in this area.

A. Electron selection

In the electron channel, events were selected online using two different triggers depending on the instantaneous luminosity. The tighter trigger requirement corresponds to 99.1\% of the data and is a subset of the looser one. It required the presence of at least one electromagnetic cluster in the calorimeter with transverse energy above 15 GeV in the region of \(|\eta| < 2.5\). The final selection requirements were applied by the online event filter [12] and the kinematic variables correspond closely to those in the offline analysis described in Section V.C.

The impact of the trigger efficiency was small for electrons with \(E_T > 20\) GeV, as required in this analysis. The efficiency was measured using \(Z \rightarrow ee\) decays identified in the experimental data. It was found to be 99.0 \(\pm 0.5\)% and constant over the full kinematic region of this measurement [16, 17].

B. Muon selection

In the muon channel, events were selected online using a trigger that required the presence of a muon candidate reconstructed in both the muon spectrometer and inner detector, consistent with having originated from the interaction region. The candidate was required to have \(p_T > 10\) GeV or \(p_T > 13\) GeV (depending on the data-taking period) and \(|\eta| < 2.4\). The higher threshold was used to collect most of the data. As in the electron case, these requirements were imposed in the online event filter and were less stringent than those applied offline. The offline selection is documented later in Section V.D. The
average trigger efficiency was measured to be \(\sim 85\% \) including the reduced geometrical acceptance in the central region.

IV. SIMULATED EVENT SAMPLES

Simulated event samples were used for most background estimates, for the correction of the signal yield for detector effects and for comparisons of results to theoretical expectations. The detector simulation [31] was performed using GEANT4 [32]. The simulated event samples are summarized in Table I for signal simulations and Table II for the background simulations. The Alpgen and Mc@NLO samples were interfaced to Herwig for parton shower and fragmentation processes and to Jimmy v4.31 [33] for underlying event simulation. Similarly, Jimmy was used for the underlying event simulation in the diboson samples produced with Herwig. The AcerMC \(\ell \ell \) samples were showered with Pythia where the default settings for initial state radiation (ISR) and final state radiation (FSR) were altered [34]. The parameterization of the factorization scale used for the matrix element (ME) calculation in the Alpgen samples was chosen to be \(Q_0^2 = m_V^2 + \sum_{\text{partons}} (p_T^2) \), where \(m_V \) is the mass of a \(W \) or \(Z \) boson and the decay products of the boson are not included in the sum [21]. The parton-jet matching was performed at \(p_T^{\text{jet}} = 20 \) GeV with the MLM matching scheme [35] using jets from the cone clustering algorithm with \(R = 0.7 \). The default renormalization and factorization scales were used in the Sherpa samples and the parton-jet matching was performed at \(p_T^{\text{jet}} = 30 \) GeV using the CKKW matching scheme [36, 37]. Parton density functions (PDFs) were: CTEQ6L1 [38] for the Alpgen samples and the parton showering and underlying event in the PowHeg samples interfaced to Pythia; MRST 2007 LO* [39] for Pythia, AcerMC, and the diboson samples; and CTEQ6.6M [40] for Mc@NLO, Sherpa, and the NLO matrix element calculations in PowHeg. The radiation of photons from charged leptons was treated in Herwig and Pythia using Photos v2.15.4 [41]. Tauola v1.0.2 [42] was used for \(\tau \) lepton decays. The underlying event tunes were the ATLAS MC10 tunes: ATLAS underlying event tune #1 (AUET1) [43] for the Herwig, Alpgen, and Mc@NLO samples; ATLAS minimum bias 1 (AMBT1) [44] for Pythia, AcerMC, and PowHeg samples. These two tunes were derived using pp collisions at \(\sqrt{s} = 7 \) TeV produced at the LHC. The samples generated with Sherpa used the default underlying event tune determined from lower energy measurements and pp data from the LHC.

Samples were generated with minimum bias interactions overlaid on the hard-scattering event to account for the multiple pp interactions in the same beam crossing (pile-up). The minimum bias interactions were simulated with Pythia with the AMBT1 tune. These samples were then re-weighted so the distribution of the number of primary vertices matched that of the data.

V. OFFLINE EVENT ANALYSIS

Events were selected if they satisfied the criteria described above and had at least one interaction vertex with three or more associated charged particle tracks, located within 200 mm in \(z \) from the center of the detector. For these data the luminous region had a typical RMS size of \(\sim 60 \) mm in \(z \). The position resolution of reconstructed vertices along \(z \) was \(\sim 0.1 \) mm for a vertex with 10 tracks. For the sample of events passing the single-lepton trigger the mean number of interaction vertices was 2.1 per event. The primary vertex was taken as the one with the largest \(\Sigma p_T^2 \) of associated tracks. Events with significant noise in the calorimeters, cosmic rays, and beam-induced background were rejected [45].

A. Jet selection

Jets were reconstructed from energy observed in the calorimeter cells using the anti-\(k_T \) algorithm [46] with a radius parameter \(R = 0.4 \) [45]. Since the volume of individual cells is small compared to the volume of the electromagnetic and hadronic energy showers, cells were grouped into clusters depending on their signal size relative to noise [47]. These clusters formed the input to the jet reconstruction. Since a jet involves many clusters a mass can be calculated and the jet rapidity rather than pseudorapidity was determined.

To account for the difference in calorimeter response between electrons and hadrons of the same energy, and to correct for other experimental effects, a \(p_T \) and \(\eta \)-dependent factor, derived from simulated events, was applied to each jet to provide an average energy scale correction [45]. Jets were required to have a rapidity \(|y| < 4.4 \) and \(p_T > 30 \) GeV. To ensure a reliable energy measurement all jets within \(\Delta R < 0.5 \) of an electron or muon (that passed the lepton identification requirements) were explicitly not considered, regardless of the jet \(p_T \) or rapidity, but the event itself was retained. Jets consistent with detector noise, cosmic rays, or beam halo were rejected [45]. The jet rejection requirement was more stringent than that applied to events.

To suppress jets arising from additional \(pp \) interactions a parameter called the jet-vertex fraction (JVF) was calculated for each jet in the event. After associating tracks to jets by requiring \(\Delta R < 0.4 \) between tracks and a jet, the JVF was computed for each jet as the scalar sum of \(p_T \) of all associated tracks from the primary vertex divided by the total \(p_T \) associated with that jet from all vertices. The JVF could not be calculated for jets which fell outside the fiducial tracking region \((|\eta| < 2.5)\) or which had no matching tracks so these were assigned a value of \(-1\) for accounting purposes. Only jets with
TABLE I. Samples of simulated signal events used in this analysis. The \(W \) samples are normalized to the inclusive NNLO cross section of 10.46 nb calculated with FEWZ \([18]\) using the MSTW2008 PDF set \([19]\). For PYTHIA, the inclusive \(W \) sample is based on a \(2 \to 1 \) matrix element merged with a \(2 \to 2 \) matrix element and a leading-logarithmic parton shower. Details of PDF sets, final-state photon radiation, and underlying event tunes are given in the text.

<table>
<thead>
<tr>
<th>Physics process</th>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W) inclusive ((W \to \ell \nu; \ell = e, \mu, \tau))</td>
<td>PYTHIA 6.4.21 [20]</td>
</tr>
<tr>
<td>(W +) jets ((W \to \ell \nu; \ell = e, \mu; 0 \leq N_{\text{parton}} \leq 5))</td>
<td>ALPGEN 2.13 [21]</td>
</tr>
<tr>
<td>(W +) jets ((W \to \ell \nu; \ell = e, \mu; 0 \leq N_{\text{parton}} \leq 5))</td>
<td>SHERPA 3.1.1 [22]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physics process</th>
<th>(\sigma \cdot \text{BR}) (ab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z +) jets ((Z \to \ell \ell; \ell = e, \mu; m_{\ell\ell} > 40 \text{ GeV}; 0 \leq N_{\text{parton}} \leq 5))</td>
<td>ALPGEN 2.13 [21]</td>
</tr>
<tr>
<td>(Z \to \tau\tau) ((m_{\ell\ell} > 60 \text{ GeV}))</td>
<td>PYTHIA 6.4.21 [20]</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>PowHeg-HVQ v1.01 patch 4 [23]</td>
</tr>
<tr>
<td>Single-top (t \to \ell \nu q) (s-channel)</td>
<td>ACERMC 3.7 [25]</td>
</tr>
<tr>
<td>Single-top (t \to \ell \nu q) (t-channel)</td>
<td>NLO [18]</td>
</tr>
<tr>
<td>Single-top ((Wt))</td>
<td>NLO [18]</td>
</tr>
<tr>
<td>(WW)</td>
<td>NLO [18]</td>
</tr>
<tr>
<td>(WZ) ((m_Z > 60 \text{ GeV}))</td>
<td>NLO [18]</td>
</tr>
<tr>
<td>(ZZ) ((m_Z > 60 \text{ GeV}))</td>
<td>NLO [18]</td>
</tr>
<tr>
<td>Dijet ((\mu) channel, (p_T^\mu > 8 \text{ GeV}), (p_T^W > 8 \text{ GeV}))</td>
<td>NLO [18]</td>
</tr>
</tbody>
</table>

The absolute value of the JVF smaller than 0.75 were rejected so that jets with a JVF of -1 were kept. Figure 1 shows the distribution of this parameter for all jets in the \(W \to e\nu \) data and Monte Carlo event samples. The requirement on the JVF is most important for low \(p_T \) jets and for the data with high instantaneous luminosity.

The pile-up collisions also add a uniform background of particles to the events and slightly increase the measured jet energies. The jet energy calibration factor described above contains a correction for this effect.

No minimum separation \(\Delta R \) was required between final state jets, but the measured jet response changed for separations less than \(\Delta R < 0.5 \). This distortion in the response was corrected by the event reconstruction efficiency calculation and residual effects enter the estimated systematic uncertainties.

After the application of all jet requirements, the efficiency for reconstructing jets was determined from simulation to be \(\sim 97\% \) for jets with \(p_T = 30 \text{ GeV} \), rising to close to 100\% for jets above 80 GeV. The uncertainties in the jet energy scale and jet energy resolution were determined in separate studies \([45]\). The uncertainties in the jet energy scale were 2.5–14\%, and depended on the \(\eta \) and \(p_T \) of the jet. The uncertainty on the jet energy resolution was \(\sim 10\% \) for each jet, relative to the nominal resolution which also varied with \(\eta \) and \(p_T \).

B. Missing transverse momentum and \(m_T(W) \)

The calculation of missing transverse momentum (\(E_T^{\text{miss}} \)) and transverse mass of \(W \) bosons (\(m_T(W) \)) followed the prescription in Refs. \([48]\) and \([16]\). \(m_T(W) \) was defined by the lepton and neutrino \(p_T \) and direction as \(m_T(W) = \sqrt{2p_T^l p_T^\nu (1 - \cos(\phi^l - \phi^\nu))} \), where the \((x, y) \) components of the neutrino momentum were taken to be the same as the corresponding \(E_T^{\text{miss}} \) components. \(E_T^{\text{miss}} \) was calculated from the energy deposits in calorimeter cells inside three-dimensional clusters \([47]\). These clusters were then corrected to account for the different response to hadrons compared to electrons or photons, as well as dead material and out-of-cluster energy losses \([49]\). Only clusters within \(|\eta| < 4.5 \) were used. In the muon channel, \(E_T^{\text{miss}} \) was corrected for the muon momentum and its energy deposit in the calorimeters. Events were required to have \(E_T^{\text{miss}} > 25 \text{ GeV} \) and \(m_T(W) > 40 \text{ GeV} \).

C. \(W \to e\nu + \) jets final state

Electrons were required to pass the standard “tight” electron selection criteria \([16, 17]\) with \(E_T > 20 \text{ GeV} \) and \(|\eta| < 2.47 \). Electrons in the transition region between the
The principal backgrounds in the electron channel arise from multijet QCD events, other leptonic decays of gauge bosons and, at higher jet multiplicities, $t\bar{t}$ production. The background from gauge bosons includes $W \rightarrow \tau \nu$ where the τ lepton decays to an electron and $Z \rightarrow ee$ where one electron is not identified and hadronic energy in the event is mismeasured. Leptonic $t\bar{t}$ decays ($t\bar{t} \rightarrow b\bar{b}qq'ev$), single-top events and diboson (WW, WZ, ZZ) processes were also evaluated. The number of leptonic background events surviving the above selection requirements was estimated with simulated event samples that were introduced earlier in Section IV. Specifically, PYTHIA was used for $W \rightarrow \tau \nu$ and $Z \rightarrow \tau \tau$ and ALPGEN for the other vector boson samples. The simulated leptonic background samples were normalized to the integrated luminosity of the data using the predicted cross sections shown in Table II. The $t\bar{t}$ background is discussed in more detail later in Section V E.

The multijet background in the electron channel has two components, one where a light flavor jet passes the electron selection and additional energy mismeasurement results in large E_T^{miss}, and the other where a bottom or charm hadron decays to an electron. The number of multijet background events was estimated by fitting, for each exclusive jet multiplicity, the E_T^{miss} distribution in the data (without the E_T^{miss} selection requirement) to a sum of two templates: one for the multijet background and another which included signal and the leptonic backgrounds. The fits determined the relative normalizations of the two templates for each exclusive jet multiplicity. The shapes for the second template were obtained from simulation and their relative normalization was fixed to the ratio of their predicted cross sections.

The template for the multijet background was obtained from the data because the mechanisms by which a jet fakes an electron are difficult to simulate reliably. The template was derived by loosening some of the electron identification requirements. Two approaches were taken so their results could be compared.

In the first, the requirements on shower shape in the calorimeter were relaxed. The “loose” electron identification criteria of Ref. [16, 17] were applied to the shower shapes. The track-cluster matching requirements applied in the standard “tight” electron selection were still applied but the remaining “tight” requirements with respect to the “medium” requirements were required to fail [16, 17]; the selection favors electron candidates from conversions or from charged hadrons overlapping electromagnetic showers.

In the second method, the requirement that a track matched the energy deposition in the calorimeter was relaxed and loose photon identification requirements were used instead of those of an electron.

To suppress any residual signal contribution, the isolation requirement was also reversed in both methods. A large simulated dijet sample was used to verify that these requirements do not bias the E_T^{miss} shape of the background templates.

The results of the two methods were compared for each jet multiplicity and agreed within their statistical uncertainties. For the zero-jet bin they agreed to better than 17% with respect to the total number of candidate background events. Residual differences are included in the estimates of systematic uncertainty described below. The range of E_T^{miss} used to fit the templates was also varied to

1. Electron channel background estimates

The principal backgrounds in the electron channel arise from multijet QCD events, other leptonic decays of gauge bosons and, at higher jet multiplicities, $t\bar{t}$ production. The background from gauge bosons includes $W \rightarrow \tau \nu$ where the τ lepton decays to an electron and $Z \rightarrow ee$ where one electron is not identified and hadronic energy in the event is mismeasured. Leptonic $t\bar{t}$ decays ($t\bar{t} \rightarrow b\bar{b}qq'ev$), single-top events and diboson (WW, WZ, ZZ) processes were also evaluated. The number of leptonic background events surviving the above selection requirements was estimated with simulated event samples that were introduced earlier in Section IV. Specifically, PYTHIA was used for $W \rightarrow \tau \nu$ and $Z \rightarrow \tau \tau$ and ALPGEN for the other vector boson samples. The simulated leptonic background samples were normalized to the integrated luminosity of the data using the predicted cross sections shown in Table II. The $t\bar{t}$ background is discussed in more detail later in Section V E.

The multijet background in the electron channel has two components, one where a light flavor jet passes the electron selection and additional energy mismeasurement results in large E_T^{miss}, and the other where a bottom or charm hadron decays to an electron. The number of multijet background events was estimated by fitting, for each exclusive jet multiplicity, the E_T^{miss} distribution in the data (without the E_T^{miss} selection requirement) to a sum of two templates: one for the multijet background and another which included signal and the leptonic backgrounds. The fits determined the relative normalizations of the two templates for each exclusive jet multiplicity. The shapes for the second template were obtained from simulation and their relative normalization was fixed to the ratio of their predicted cross sections.

The template for the multijet background was obtained from the data because the mechanisms by which a jet fakes an electron are difficult to simulate reliably. The template was derived by loosening some of the electron identification requirements. Two approaches were taken so their results could be compared.

In the first, the requirements on shower shape in the calorimeter were relaxed. The “loose” electron identification criteria of Ref. [16, 17] were applied to the shower shapes. The track-cluster matching requirements applied in the standard “tight” electron selection were still applied but the remaining “tight” requirements with respect to the “medium” requirements were required to fail [16, 17]; the selection favors electron candidates from conversions or from charged hadrons overlapping electromagnetic showers.

In the second method, the requirement that a track matched the energy deposition in the calorimeter was relaxed and loose photon identification requirements were used instead of those of an electron.

To suppress any residual signal contribution, the isolation requirement was also reversed in both methods. A large simulated dijet sample was used to verify that these requirements do not bias the E_T^{miss} shape of the background templates.

The results of the two methods were compared for each jet multiplicity and agreed within their statistical uncertainties. For the zero-jet bin they agreed to better than 17% with respect to the total number of candidate background events. Residual differences are included in the estimates of systematic uncertainty described below. The range of E_T^{miss} used to fit the templates was also varied to
estimate systematic effects. The first method was used to calculate the central values of the multijet backgrounds for the various jet multiplicities. The comparisons of the template fits to the E_T^{miss} distributions are shown in Fig. 2 for the first type of multijet template. Figure 3 shows the final $m_T(W)$ distributions in the various bins of inclusive jet multiplicity.

2. Electron channel systematic uncertainties

The systematic uncertainties for the electron channel are summarized in Table III. The calculation of uncertainty on the number of multijet background events was introduced in Section VC1.

The electron trigger efficiency was measured using $Z \rightarrow ee$ events triggered by an object other than the electron under study (tag-and-probe method). A scale factor of $99.5 \pm 0.5\%$ relative to the value predicted by the Monte Carlo simulation was determined. The same event samples were used to determine the electron reconstruction and identification efficiencies relative to the Monte Carlo prediction. The reconstruction efficiencies were consistent with the Monte Carlo values within a systematic uncertainty of 1.5%. Data-driven corrections to the simulated identification efficiencies were characterized by a two-dimensional matrix in η and E_T. The $Z \rightarrow ee$ events were also used to test the electron identification efficiency for any dependence on accompanying jet activity and none was found.

The measured electron energy scale and resolution were also studied with $Z \rightarrow ee$ events. In the data, electron energies were adjusted with an η-dependent correction with typical values of about 2% [17]. The electron energy resolution was similarly tested and adjusted in simulated events. The residual systematic uncertainties are shown in Table III.

D. $W \rightarrow \mu\nu +$ jets final state

The muons were required to be reconstructed in both the ID and MS subsystems and to have $p_T > 20$ GeV and $|\eta| < 2.4$. The ID track requirements were those of Ref. [16]. An ID-based muon isolation was applied which required a relative isolation of $\Sigma p_T^{\text{jet}}/p_T^{\text{muon}} < 0.1$, us-
Uncertainty ∼ \sqrt{C_1 < 217 ∼ 54x185}ing a cone size of ∆R < 0.2, where \Sigma p_T^{ID} included all ID tracks in the cone except the muon track. To help ensure that the muon is prompt it was required that the transverse impact parameter of the track d_0 and its uncertainty \sigma(d_0) satisfied |d_0/\sigma(d_0)| < 3. Also the longitudinal impact parameter \Delta z was required to satisfy |\Delta z| < 10 mm to reduce contributions from in-time pileup and cosmic ray muons. These impact parameters were measured with respect to the primary vertex. Events were rejected if there was a second muon passing the same kinematic selections and isolation requirements as above. These muon selection criteria are similar to those applied in Ref. [9].

1. Muon channel background estimates

For the muon channel, the main backgrounds arise from semileptonic decays of heavy flavor hadrons in multijet events, other leptonic decays of heavy gauge bosons, and t\bar{t} production. The backgrounds from gauge bosons include W → ντ where the tau decays to a muon, Z → μμ where one muon is not identified, Z → ττ, and diboson production. For low jet multiplicities the largest backgrounds are W → τν and Z → μμ, while for higher multiplicities t\bar{t} production dominates (t\bar{t} → b\bar{b}QQ'\ell\nu). Similarly to the electron channel, the number of leptonic background events surviving the selection criteria was estimated with simulated event samples described in Section IV. PYTHIA was used only for inclusive production of W → τν and Z → ττ and ALPHEN for the other vector boson samples. The simulated leptonic background samples were normalized to the integrated luminosity of the data using the predicted NNLO, NLO+NNLL or NLO cross sections. Discussion of the t\bar{t} background follows in Section V E.
The multijet QCD background in the muon channel is dominated by leptonic decays of bottom or charm hadrons in jets where the hadron decay involves a muon and neutrino. The number of background events was estimated by fitting, for each exclusive jet multiplicity, the E_T^{miss} distribution in the data (with relaxed selection requirements on E_T^{miss} and $m_T(W)$: $E_T^{\text{miss}} > 15$ GeV and $m_T(W) > 35$ GeV) to a sum of two templates: one for the multijet background and another which included signal and the leptonic backgrounds. The fit determined the relative normalization of the two templates. The shapes for the second template were obtained from simulation and their relative normalization was fixed to the predicted cross sections. The full kinematic selection, $E_T^{\text{miss}} > 25$ GeV and $m_T(W) > 40$ GeV, was imposed on the multijet background samples to convert their normalization coefficients from the relaxed to full selection.

The template for the multijet background was obtained from data by applying all the standard muon selection requirements, except that the requirement on the significance of the transverse impact parameter was reversed to $|d_0|/\sigma(d_0) > 3$. In addition, the impact parameter was required to be within 0.1 < $|d_0| < 0.4$ mm. The lower cut on the impact parameter reduces signal $W \rightarrow \mu\nu$ events leaking into the background sample. The upper cut on $|d_0|$ was placed to minimize bias from multijet events where an isolated muon is accompanied by a nearby energetic jet; the isolated muons from decays of heavy hadrons tend to have large impact parameter. The background events with a muon and an energetic jet do not survive the standard muon selection due to the stringent requirement on the impact parameter, in conjunction with the isolation cut.

The comparisons of the template fits to the E_T^{miss} distributions are presented in Fig. 4 for $W \rightarrow \mu\nu$ events with the relaxed selection requirements on E_T^{miss} and $m_T(W)$. Figure 5 shows the final $m_T(W)$ distributions in the various bins of inclusive jet multiplicity for events passing the normal selection requirements.

Another set of templates for the multijet background was obtained using a simulated dijet sample from PYTHIA where the event record was required to contain at least one muon with $p_T > 8$ GeV. The second set of templates was fitted to data in the same manner as the first in order to estimate a systematic uncertainty in the number of multijet background events. The uncertainty increased with the jet multiplicity from 15% for the inclusive W-boson sample up to 76% for events with a W
3 jets

in addition to the uncer-

0.6–0.7%

∼ V C 2

< V D 1

Uncertainty

5 jets

 backgrounds are normalized to luminosity using (N)NLO cross sections and the multijet background is estimated from data.

boson and four or more jets.

2. Muon channel systematic uncertainties

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger efficiency</td>
<td>0.6–0.7%</td>
</tr>
</tbody>
</table>
| Muon reconstruction and identifi-
 cation | ~1.1\% |
| Muon pT scale | ~0.4\% |
| Muon pT resolution | < 6\% |
| Multijet QCD background | 15 – 76\%; differ-
 ence between the two templates,
 see Section V D 1 |

\(a\) \(\eta\) – \(p_T\) dependent
\(b\) \(\eta\) – \(\phi\) dependent
\(c\) \(\eta\) – \(p_T\) dependent relative to the measured resolution
\(d\) varies with jet multiplicity

The muon trigger efficiencies were measured using a \(Z \rightarrow \mu \mu\) sample triggered by a muon candidate other than the muon under study [16]. Scale factors close to unity, relative to the value predicted by the Monte Carlo simulation, were obtained for the muon triggers. The scale factors were calculated as a function of muon \(\eta\) and \(p_T\). The same sample of events was used to determine the muon reconstruction and identification efficiencies as a two-dimensional matrix in \(\eta\) and \(\phi\) [50, 51]. The measured efficiencies were used to correct the simulated samples. The average efficiency correction is consistent with unity within a systematic uncertainty of 1.1%.

The measured momentum scale and resolution for the muons were studied with \(Z \rightarrow \mu \mu\) events [52]. The muon transverse momentum and its resolution were calibrated as a function of \(\eta\) and \(p_T\). The systematic uncertainties for the muon channel are summarized in Table IV.

E. Detector-level comparisons between final states of \(W \rightarrow e \nu + \) jets and \(W \rightarrow \mu \nu + \) jets

Observed and expected distributions for several variables have been compared for the electron and muon channels. The observed distributions are shown with statistical uncertainties. The expected distributions are presented with experimental uncertainties that include those described later in Section V G in addition to the uncertainties specific to the two channels from Sections V C 2
FIG. 6. The uncorrected inclusive jet multiplicity distribution. The following remarks apply to this and subsequent figures. Top: electron channel. Bottom: muon channel. The signal and leptonic backgrounds are shown using simulations, whereas the multijet background uses the method described in the text. The signal and leptonic backgrounds are normalized to the predicted cross sections. The black-hashed regions illustrate the experimental uncertainties on the predicted distributions.

FIG. 7. The uncorrected distribution in p_T of the jet with the highest p_T, in events with one or more jets.
FIG. 8. The uncorrected distribution in p_T of the jet with the second highest p_T, in events with two or more jets.

FIG. 9. The uncorrected distribution in p_T of the jet with the third highest p_T, in events with three or more jets.
FIG. 10. The uncorrected distribution in p_T of the jet with the fourth highest p_T, in events with four or more jets.

FIG. 11. The uncorrected distribution in rapidity of the leading jet, $y(\text{first jet})$, in events with one or more jets.
FIG. 12. The uncorrected distribution in $y(ℓ) - y($first jet$)$, rapidity difference between the lepton and the leading jet, for events with one or more jets.

FIG. 13. The uncorrected distribution in $y(ℓ) + y($first jet$)$, sum of rapidities of the lepton and the leading jet, for events with one or more jets.
FIG. 14. The uncorrected distribution as a function of ΔR(first jet, second jet), distance between the first two jets, for events with two or more jets.

FIG. 15. The uncorrected distribution as a function of $\Delta \phi$(first jet, second jet), azimuthal separation between the first two jets, for events with two or more jets.
Distributions of the inclusive jet multiplicity are shown in Fig. 6. Figures 7, 8, 9, and 10 show distributions in p_T of the first four (highest p_T) jets. The rapidity of the first jet is shown in Fig. 11. The difference and sum of the rapidities of the lepton and the first jet are shown in Figs. 12 and 13, respectively. Variables dependent on the azimuthal and rapidity separations between the first two jets are featured in Figs. 14, 15, and 16. Overall, a good agreement is seen between measured and predicted distributions. Minor discrepancies appear for jet pairs with large rapidity separation in Figs. 14 and 16. Fig. 12 illustrates discrepancies for events with the first jet separated in rapidity from the lepton. Predictions in Figs. 11, 12, and 13 are found to be sensitive to the choice of PDF.

Top quark pair production is a substantial background to $W+\text{jets}$ in events with four or more jets as can be seen in Fig. 6. The predicted $t\bar{t}$ cross section of $165^{+11}_{-16}\text{ pb}$ [24] is fully consistent with the measured value of $171\pm20\text{(stat.)}\pm14\text{(syst.)}^{+5}_{-6}\text{(lum.) pb}$, obtained with the same 2010 data sample [53]. Here the predicted one was used to obtain the cross section results.

Several kinematic distributions were used to check the normalisation of the $t\bar{t}$ component in the channels with a W boson plus four or more jets. These included the rapidity of the charged lepton and the mass of the W-jet system. The normalisations obtained were consistent with the expected value but had a statistical uncertainty too large to usefully constrain the $t\bar{t}$ cross section.

F. Unfolding of efficiency and resolution effects

The yield of signal events was corrected back to the particle level separately for the two lepton channels, taking into account detector acceptance and reconstruction efficiency. The correction was made using an iterative Bayesian method of unfolding [54]. Bin sizes in each histogram were chosen to be a few times larger than the resolution of the corresponding variable. Migration matrices were computed using the ALPGEN $W+\text{jets}$ event generator plus full detector simulation, restricting the events to the common phase space:

- $p_T^\ell > 20\text{ GeV}$ ($\ell =$ electron or muon),
- $|\eta^\ell| < 2.5$,
- $p_T^W > 25\text{ GeV}$,
- $m_T(W) > 40\text{ GeV}$,
- $p_T^{\text{jet}} > 30\text{ GeV}$,
- $|y^{\text{jet}}| < 4.4$ and $\Delta R(\ell,\text{jet}) > 0.5$.

The common phase space requirements were applied to generated objects before the detector simulation. In this analysis, particle level jets were constructed in simulated events by applying the anti-k_T jet finder to all final state particles with a lifetime longer than 10 ps, whether produced directly in the pp collision or from the decay of particles with shorter lifetimes. Neutrinos, electrons, and muons from decays of the massive W bosons were not used for the jet finding. Final state QED radiation differs
for electrons and muons, and its effects were corrected in the combined cross sections. Fiducial cross sections for each channel were defined using final-state leptons for which collinear radiation in a cone of $R = 0.1$ is added to the lepton four-momentum [55]. This accounts for the most significant effects of collinear QED radiation. A residual correction for large-angle radiation outside this cone is then applied to bring both electrons and muons to the Born level for the combined cross sections. These corrections factors range from 0.985 to 0.995 and are similar for both electrons and muons.

Instead of inverting the migration matrix, the unfolded distributions were determined using Bayes’ theorem to recalculate the particle level distributions from the detector level distributions. The unfolded values were calculated using different numbers of iterations for different bins of a distribution. The standard Bayesian approach treats all bins using the same number of iterations. Fewer iterations were performed for bins with few events than for bins with large numbers of events to avoid large statistical fluctuations in the tails of the distributions. The number of iterations was limited for a bin once the statistical uncertainty becomes substantially larger than the change due to the last application of the unfolding matrix [56]. Tests with simulated data showed that the iterative Bayesian method was sufficient to recover particle-level distributions. The dominant detector to particle level corrections in the electron channel come from electron reconstruction efficiency ($\approx 30\%$ correction). In the muon channel, the dominant corrections come from trigger and reconstruction efficiency (corrections of $\approx 10 - 20\%$ and $\approx 10\%$ respectively). The statistical uncertainty on the unfolding was estimated using toy simulations. The systematic uncertainties on the unfolding included the uncertainty on the migration matrix which was estimated by using the alternative SHERPA simulation for W+jets production (see Table 1).

G. Overall Systematic Uncertainties

In addition to the systematic uncertainties specific to the electron and muon channels documented earlier in Sections V C 2 and V D 2 , respectively, there are a number of common sources of uncertainty. As a brief reminder, the uncertainty on the identification efficiency for electrons results in $^{+4.0}_{-3.3}\%$ variation of the $N_{\text{jet}} \geq 1$ cross section, giving the largest variation among the electron-specific uncertainties. Similarly, the uncertainty on reconstruction and identification efficiency of muons corresponds to a variation of $\pm 1.1\%$ in the $N_{\text{jet}} \geq 1$ cross section and represents the single largest muon-specific uncertainty.

The dominant source of systematic uncertainty in the cross section measurement for both electron and muon channels is the uncertainty in the jet energy scale [45]. For $N_{\text{jet}} \geq 4$, uncertainties on the predicted tt cross section and tt shape also become significant and can be as high as 10% and 21%, respectively. The luminosity uncertainty enters primarily through the signal normalization but also has a small effect on the estimation of the leptonic backgrounds.

Uncertainties in the jet energy scale (JES) and jet energy resolution (JER) were determined from data and simulation [45]. The JER uncertainty was 10% of the jet energy resolution [45]. The JES uncertainty varies as a function of jet p_T and η, and ranges from $\sim 2.5\%$ at 60 GeV in the central region to $\sim 14\%$ below 30 GeV in the forward regions; the uncertainty increases monotonically with the absolute value of jet pseudorapidity. The uncertainty on the correction of the JES for pile-up pp interactions is less than 1.5% per additional interaction for jets with $p_T > 50$ GeV. To take into account the differences in calorimeter response to quark- and gluon-initiated jets, the uncertainty on the fraction of gluon-initiated jets, the flavor composition [45], was estimated by comparing the fractions in SHERPA and ALPGEN simulations for W+jets production. For jets accompanied by a second jet within $\Delta R < 0.7$, an additional uncertainty is added to the JES uncertainty; the additional uncertainty is less than 2.8%. To estimate the impact of the JES uncertainty, jet energies in the simulated events were coherently shifted by the JES uncertainty, and the E_T^{miss} vector was recomputed. In addition, simulated energy clusters in the calorimeters not associated with a jet or electron, such as those coming from the underlying event and pile-up interactions, were scaled using a p_T and $|\eta|$ dependent uncertainty [16], ranging from $\pm 5.5\%$ for central clusters at $p_T \sim 500$ MeV to $\pm 3\%$ at high p_T. Similarly the simulated jet energies were smeared by the JER uncertainty and the E_T^{miss} vector was recomputed. The full analysis was repeated with these variations, and the cross sections were recomputed; the change in the cross section was taken as the systematic uncertainty. The uncertainty on the measured cross sections caused by the uncertainties on the JES and cluster energy scale increases with jet multiplicity from 9% for $N_{\text{jet}} \geq 1$ to 37% for $N_{\text{jet}} \geq 4$. The impact of the JES uncertainty is amplified for events with high jet multiplicities due to the large subtraction of tt events, corresponding to $\sim 54\%$ of these events. The simulated jet multiplicity of the top background is sensitive to the JES. The magnification is somewhat smaller when jets are selected with $p_T^{\text{jet}} > 20$ GeV instead of 30 GeV; the JES-related uncertainty on the $N_{\text{jet}} \geq 4$ cross section is up to 29%.

The uncertainty due to jets originating from pile-up interactions and the influence of the JVF selection requirement includes the efficiency of the requirement and how well the rate of pile-up jets is modeled in the simulation. As a conservative estimate, the percentage of jets in the data removed by the JVF requirement is applied as the uncertainty. This results in a 1.5% uncertainty for jets with $p_T < 40$ GeV with a resulting uncertainty on the cross section of 1% for $N_{\text{jet}} \geq 1$.

Other uncertainties which were considered include the jet reconstruction efficiency and biases in the procedure
for correcting for detector effects (by comparing correction factors obtained with ALPGEN to those obtained with SHERPA). Their effect on the cross section was found to be smaller than the uncertainties described before. All of these systematic uncertainties were also applied to the estimates of the multijet and leptonic backgrounds in both electron and muon channels. In addition, for the leptonic backgrounds the uncertainty in the NNLO cross sections was taken to be 5% for N_{jet} production as in Ref. [16]. The $t\bar{t}$ cross section uncertainty was taken to be $^{+10}_{-7}$% [24]. The uncertainty on the shapes of the $t\bar{t}$ distributions was estimated using ACERMC simulations where rates of ISR and FSR were altered with respect to the default settings. Samples with altered ISR were used to estimate the shape uncertainty since their impact on measured cross sections was the largest among these samples. The procedure has been used for ATLAS measurements involving top pair production [53].

The systematic uncertainties in the cross section measurement are summarized in Table V for $N_{\text{jet}} \geq 1$ and $N_{\text{jet}} \geq 4$; most of the uncertainties are approximately independent of the jet multiplicity, except for the uncertainty due to the jet energy scale and resolution, multijet background shape, $t\bar{t}$ production, and pile-up jet removal. The uncertainty due to the jet energy scale dominates for events with at least one jet as illustrated in Fig. 17.

In the cross section ratio measurement, $\sigma(W+ \geq N_{\text{jet}})/\sigma(W+ \geq N_{\text{jet}} - 1)$, the uncertainty due to the jet energy scale uncertainty remains the dominant effect, amounting to approximately 5–20% on the ratio. The luminosity uncertainty does not completely cancel in the ratio because the background estimates are affected by the luminosity uncertainty and the background levels vary as a function of jet multiplicity.
FIG. 17. Systematic uncertainties on the cross section as a function of the inclusive jet multiplicity. The uncertainty due to the jet energy scale is bounded by the two black lines. The quadratic sum of the other systematic uncertainties is presented as the shaded area. The uncertainties are for the sum of the electron and muon cross sections.

VI. NEXT-TO-LEADING-ORDER QCD PREDICTIONS

The MCFM v5.8 [28] and BlackHat-Sherpa [11] predictions were obtained with the same jet algorithm and same kinematic selection requirements applied to the data. In both cases, renormalization and factorization scales were set to $H_T/2$, where H_T is the scalar sum of the p_T of all the partons and of the lepton and neutrino from the W-decay. The PDFs used for MCFM were CTEQ6L1 [38] and CTEQ6.6M [40] for the LO and NLO calculations, respectively. For BlackHat-Sherpa CTEQ6.6M was used for both LO and NLO calculations.

The systematic uncertainty in the MCFM and BlackHat-Sherpa cross section due to renormalization and factorization scales were estimated by varying the scales by factors of two, up and down, in all combinations. The ratio of one scale to the other was kept within the range 0.5 to 2.0 to avoid the effects of large logarithms of the scale ratios in some kinematic regions. The cross section ratio, $\sigma(W+\geq N_{\text{jet}})/\sigma(W+\geq N_{\text{jet}}-1)$, was re-calculated for each variation of the scales and the resulting uncertainty was determined using the recalculated values. Overall, the asynchronous variations of scales resulted in bigger deviations from the nominal values than the synchronous variations. The upper and lower uncertainties were taken as the maximum deviations from the nominal value.

Following the PDF4LHC recommendations [57], PDF uncertainties were computed by summing in quadrature the dependence on each of the 22 eigenvectors characterizing the CTEQ6.6 PDF set; the uncertainty in α_s was also taken into account. The uncertainties were scaled to a confidence level (C.L.) of 68%. Two alternative PDF sets, MSTW2008 [19], with its set of 68% C.L. eigenvectors, and NNPDF2.0 [58], were also examined. The error envelope of CTEQ6.6 was found to contain nearly all variations due to the two alternative PDF sets. The uncertainties due to the scale variations were substantially larger than those due to PDFs.

As a cross-check, cross sections from BlackHat-Sherpa and MCFM were compared for events with up to two jets, and found to be nearly identical. Therefore, only distributions from BlackHat-Sherpa were compared to the measured cross sections.

Bin-by-bin corrections for non-pQCD effects, hadronization and underlying event, were computed using simulated $W+$jets samples for each predicted distribution for the NLO cross sections. The corrections were taken to be the ratios of the distributions for particle-level jets to the distributions for parton-level jets, where the sample for parton-level jets was produced with the underlying event turned off. To calculate the central values, samples from ALPGEN v2.13 were showered with HERWIG v6.510 and JIMMY v4.31 set to the AUET2 tune [59]. The systematic uncertainty on the non-pQCD corrections was evaluated by comparing the central values to corrections from samples where ALPGEN was showered with PYTHIA v6.4.21 set to the AMBT1 [44] event generator tune. The corrections and their uncertainties were applied to all the NLO predictions presented in the paper.

VII. CROSS SECTION RESULTS

The measured $W+$jets cross sections were calculated in the limited kinematic region defined in Section V F. All cross sections were multiplied by the leptonic branching ratio, $Br(W \rightarrow \ell\nu)$.

The cross sections for the $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ channels were calculated separately and then compared. The two sets of cross sections were found in good agreement within their uncorrelated uncertainties. The systematic uncertainties specific to the individual channels were considered fully uncorrelated and the common systematic uncertainties fully correlated. Results for the electron and muon channels were combined using three passes of the Best Linear Unbiased Estimator (BLUE) technique [60–62]. Three iterations were required to compute the upper systematic uncertainty, the central value, and the lower systematic uncertainty. The combination improved uncertainties and fluctuations in the tails of the measured distributions.

Particle level expectations from ALPGEN and SHERPA simulations as well as a calculation using BlackHat-Sherpa were compared to the measured cross sections. PYTHIA is shown only for selected distributions that are
given as a function of corrected jet multiplicity. As Pythia features LO matrix element accuracy for events with up to one jet, it does not provide a good description of the data for jet multiplicities greater than one. The Alpgen, Pythia, and Sherpa predictions were normalized to the NNLO inclusive W-boson production cross section. The version of BlackHat-Sherpa used here provides NLO predictions at parton level for events with up to one jet, it does not provide a good description of the data for jet multiplicities greater than one. The Alpgen, Pythia, and Sherpa predictions were normalized to the NNLO inclusive W-boson production cross section. The measured W+jets cross section results as a function of corrected jet multiplicity. The following remarks apply to this and subsequent figures unless specific comments are provided. The cross sections are quoted in the kinematic region described in Section V F. For the data, the statistical uncertainties are shown with a tick on the vertical bars, and the combined statistical and systematic uncertainties are shown with the full error bar. Also shown are predictions from Alpgen, Sherpa, Pythia and BlackHat-Sherpa, and the ratio of theoretical predictions to data (Pythia is not shown in the ratio). The distributions from Sherpa, Pythia, and Alpgen were normalized to the NNLO total W-boson production cross section.

The measured W+jets cross section results as a function of corrected jet multiplicity. The following remarks apply to this and subsequent figures unless specific comments are provided. The cross sections are quoted in the kinematic region described in Section V F. For the data, the statistical uncertainties are shown with a tick on the vertical bars, and the combined statistical and systematic uncertainties are shown with the full error bar. Also shown are predictions from Alpgen, Sherpa, Pythia and BlackHat-Sherpa, and the ratio of theoretical predictions to data (Pythia is not shown in the ratio). The distributions from Sherpa, Pythia, and Alpgen were normalized to the NNLO total W-boson production cross section.

The measured W+jets cross section results as a function of corrected jet multiplicity. The following remarks apply to this and subsequent figures unless specific comments are provided. The cross sections are quoted in the kinematic region described in Section V F. For the data, the statistical uncertainties are shown with a tick on the vertical bars, and the combined statistical and systematic uncertainties are shown with the full error bar. Also shown are predictions from Alpgen, Sherpa, Pythia and BlackHat-Sherpa, and the ratio of theoretical predictions to data (Pythia is not shown in the ratio). The distributions from Sherpa, Pythia, and Alpgen were normalized to the NNLO total W-boson production cross section.

The measured W+jets cross section results as a function of corrected jet multiplicity. The following remarks apply to this and subsequent figures unless specific comments are provided. The cross sections are quoted in the kinematic region described in Section V F. For the data, the statistical uncertainties are shown with a tick on the vertical bars, and the combined statistical and systematic uncertainties are shown with the full error bar. Also shown are predictions from Alpgen, Sherpa, Pythia and BlackHat-Sherpa, and the ratio of theoretical predictions to data (Pythia is not shown in the ratio). The distributions from Sherpa, Pythia, and Alpgen were normalized to the NNLO total W-boson production cross section.

The measured W+jets cross section results as a function of corrected jet multiplicity. The following remarks apply to this and subsequent figures unless specific comments are provided. The cross sections are quoted in the kinematic region described in Section V F. For the data, the statistical uncertainties are shown with a tick on the vertical bars, and the combined statistical and systematic uncertainties are shown with the full error bar. Also shown are predictions from Alpgen, Sherpa, Pythia and BlackHat-Sherpa, and the ratio of theoretical predictions to data (Pythia is not shown in the ratio). The distributions from Sherpa, Pythia, and Alpgen were normalized to the NNLO total W-boson production cross section.

The measured W+jets cross section results as a function of corrected jet multiplicity. The following remarks apply to this and subsequent figures unless specific comments are provided. The cross sections are quoted in the kinematic region described in Section V F. For the data, the statistical uncertainties are shown with a tick on the vertical bars, and the combined statistical and systematic uncertainties are shown with the full error bar. Also shown are predictions from Alpgen, Sherpa, Pythia and BlackHat-Sherpa, and the ratio of theoretical predictions to data (Pythia is not shown in the ratio). The distributions from Sherpa, Pythia, and Alpgen were normalized to the NNLO total W-boson production cross section.

The measured W+jets cross section results as a function of corrected jet multiplicity. The following remarks apply to this and subsequent figures unless specific comments are provided. The cross sections are quoted in the kinematic region described in Section V F. For the data, the statistical uncertainties are shown with a tick on the vertical bars, and the combined statistical and systematic uncertainties are shown with the full error bar. Also shown are predictions from Alpgen, Sherpa, Pythia and BlackHat-Sherpa, and the ratio of theoretical predictions to data (Pythia is not shown in the ratio). The distributions from Sherpa, Pythia, and Alpgen were normalized to the NNLO total W-boson production cross section.

The measured W+jets cross section results as a function of corrected jet multiplicity. The following remarks apply to this and subsequent figures unless specific comments are provided. The cross sections are quoted in the kinematic region described in Section V F. For the data, the statistical uncertainties are shown with a tick on the vertical bars, and the combined statistical and systematic uncertainties are shown with the full error bar. Also shown are predictions from Alpgen, Sherpa, Pythia and BlackHat-Sherpa, and the ratio of theoretical predictions to data (Pythia is not shown in the ratio). The distributions from Sherpa, Pythia, and Alpgen were normalized to the NNLO total W-boson production cross section.

The measured W+jets cross section results as a function of corrected jet multiplicity. The following remarks apply to this and subsequent figures unless specific comments are provided. The cross sections are quoted in the kinematic region described in Section V F. For the data, the statistical uncertainties are shown with a tick on the vertical bars, and the combined statistical and systematic uncertainties are shown with the full error bar. Also shown are predictions from Alpgen, Sherpa, Pythia and BlackHat-Sherpa, and the ratio of theoretical predictions to data (Pythia is not shown in the ratio). The distributions from Sherpa, Pythia, and Alpgen were normalized to the NNLO total W-boson production cross section.
by defining the distance as

\[\Delta \text{anti-}k_t, \text{R}=0.4 \]

\[\Delta R(\text{first jet, second jet}), y(\text{first jet}) - y(\text{second jet}), \text{and} \]

\[\Delta \phi(\text{first jet, second jet}), \text{respectively}. \]

This set of measurements offers a test of hard parton radiation at large angles and of matrix element to parton shower matching schemes. The majority of jets are modeled via the ME calculation for the jet pairs with large angular separation, when \(\Delta R \) and \(\Delta \phi \) are close to \(\pi \). Collinear radiation at small angular separation, when \(\Delta R \) is small, is produced mainly via the parton shower. Overall, ALPGEN and BLACKHAT-SHERPA demonstrate good agreement with the data while SHERPA deviates due to the differences in PDFs, \(\alpha_s \), and factorization scales.

All distributions were also produced with the selection requirement on \(p_T^{\text{jet}} \) reduced from 30 GeV to 20 GeV. The results for the softer threshold are given in Appendix A. The softer threshold makes the cross sections more sensitive to the non-pQCD and experimental effects, especially for forward jets.

All these cross sections accompanied by the non-pQCD and QED corrections are available in HEPDATA.
FIG. 22. $W+\text{jets}$ cross section as a function of the p_T of the third jet in the event. The p_T of the third jet is shown separately for events with ≥ 3 jet and ≥ 4 jet. The ≥ 4 jet distribution has been scaled down by a factor of 10. Shown are predictions from Alpgen, Sherpa, and BlackHat-Sherpa.

FIG. 23. $W+\text{jets}$ cross section as a function of the p_T of the fourth jet in the event. The distributions are for events with ≥ 4 jet. Shown are predictions from Alpgen, Sherpa, and BlackHat-Sherpa.

VIII. CONCLUSIONS

This paper presents a measurement of the $W+\text{jets}$ cross section as a function of jet multiplicity in pp collisions at $\sqrt{s} = 7$ TeV in both electron and muon decay modes of the W boson, based on an integrated luminosity of 36 pb$^{-1}$. The ratios of cross sections $\sigma(W+\geq N_{\text{jet}})/\sigma(W+\geq N_{\text{jet}}-1)$ have been calculated for inclusive jet multiplicities, N_{jet}, that range between 1 – 4 for the $p_T^\text{jet} > 30$ GeV jet threshold and between 1 – 5 for the $p_T^\text{jet} > 20$ GeV threshold. Measurements are also presented of the p_T distribution of the first through fourth jets in the event, of the invariant masses of two or more jets, of the distances between the lepton and the first jet, of the distances between the first two jets, and of the H_T distribution. The results have been corrected for all detector effects and are quoted in an ATLAS-specific range of jet and lepton kinematics. This range is almost fully covered by the detector acceptance, so as to avoid model-dependent extrapolations and to facilitate the comparison with theoretical predictions. Good agreement is observed between the predictions from the multiparton matrix element generator Alpgen and the measured distributions. At the same time, Sherpa demonstrates a slightly worse agreement with the experimental results than Alpgen. The paper features the first com-
Comparison between the NLO predictions and the LHC data for events with a W boson and four jets. Calculations based on NLO matrix elements in MC@NLO (available for jet multiplicities $N_{\text{jet}} \leq 2$) and in BLACKHAT-SHERPA (available for jet multiplicities $N_{\text{jet}} \leq 4$) are generally in good agreement with the data; deviations are observed in the $d\sigma(W + \geq \text{jets})/dH_T$ distribution at large H_T and in the tails of $d\sigma/dy(\ell)$ and $d\sigma/d(y(\ell) - y(\text{jet}))$ distributions.

ACKNOWLEDGMENTS

We are grateful to the BLACKHAT-SHERPA collaboration and Daniel Maitre for all their help.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 fa-
FIG. 27. W+jets cross section as a function of y(first jet) for events with ≥ 1 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data. The apparent discrepancy between the data and BLACKHAT-SHERPA predictions is described in the text.

[24] The cross section for the inclusive $t\bar{t}$ production was calculated with Hathor [63] with $m_{t\bar{t}} = 172.5$ GeV, CTEQ6.6 [40], with PDF and scale uncertainties added linearly [64, 65].
FIG. 28. W+jets cross section as a function of $y(\ell) - y(\text{first jet})$ for events with ≥ 1 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.

FIG. 29. W+jets cross section as a function of $y(\ell) + y(\text{first jet})$ for events with ≥ 1 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.
FIG. 30. W^{+}jets cross section as a function of ΔR(first jet, second jet) for events with ≥ 2 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.

[hep-ph].

FIG. 31. W^{+}jets cross section as a function of y(first jet) $-y$(second jet) for events with ≥ 2 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.
FIG. 32. $W+$jets cross section as a function of $\Delta\phi$(first jet, second jet) for events with ≥ 2 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.
Appendix A: Results for a jet threshold of $p_T > 20$ GeV

Here we present results for jets selected with a 20 GeV threshold in p_T. The distributions are the same variables as for jets with the 30 GeV threshold shown in Section VII except that the data with $N_{\text{jet}} \geq 5$ was used for physics conclusions; the 20 GeV threshold improved the signal-to-background ratio and event count. The softer threshold makes the cross sections more sensitive to the non-pQCD and experimental effects such as the underlying event model, multiple parton interactions, parton fragmentation, hadronization, and pile-up pp interactions. The corrections accounting for the non-pQCD effects, that were applied to BLACKHAT-SHERPA calculations, increased monotonically with the absolute value of jet rapidity from ~ 1.0 up to ~ 2.4. The uncertainties on the corrections are also larger in the forward region.

![FIG. 33. W+jets cross section results as a function of corrected jet multiplicity.](image)

![FIG. 34. W+jets cross section ratio results as a function of corrected jet multiplicity.](image)
FIG. 35. W+jets cross section as a function of the p_T of the first jet in the event. The p_T of the first jet is shown separately for events with ≥ 1 jet to ≥ 4 jet. The ≥ 2 jet, ≥ 3 jet, and ≥ 4 jet distributions have been scaled down by factors of 10, 100, and 1000 respectively. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data for ≥ 1 jet and ≥ 2 jet events.

FIG. 36. W+jets cross section as a function of the p_T of the second jet in the event. The p_T of the second jet is shown separately for events with ≥ 2 jet to ≥ 4 jet. The ≥ 3 jet and ≥ 4 jet distributions have been scaled down by factors of 10 and 100 respectively. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data for ≥ 2 jet events.

FIG. 37. W+jets cross section as a function of the p_T of the third jet in the event. The p_T of the third jet is shown separately for events with ≥ 3 jet and ≥ 4 jet. The ≥ 4 jet distribution has been scaled down by a factor of 10. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA.
FIG. 38. W+jets cross section as a function of the p_T of the fourth jet in the event. The distributions are for events with ≥ 4 jet. Shown are predictions from ALPGEN and SHERPA.

FIG. 39. W+jets cross section as a function of H_T, shown separately for ≥ 1 jets to ≥ 4 jets. The ≥ 2 jet, ≥ 3 jet, and ≥ 4 jet distributions have been scaled down by factors of 10, 100, and 1000 respectively. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data for ≥ 1 jet and ≥ 2 jet events.
FIG. 40. W+jets cross section as a function of m(jets), shown separately for ≥ 2 jets to ≥ 4 jets. The ≥ 3 jet and ≥ 4 jet distributions have been scaled down by factors of 10 and 100, respectively. Shown are predictions from Alpgen, Sherpa, and BlackHat-Sherpa, and the ratio of theoretical predictions to data for ≥ 2 jet events.

FIG. 41. W+jets cross section as a function of y(first jet) for events with ≥ 1 jets. Shown are predictions from Alpgen, Sherpa, and BlackHat-Sherpa, and the ratio of theoretical predictions to data.
FIG. 42. $W+$jets cross section as a function of $y(\ell) - y(\text{first jet})$ for events with ≥ 1 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.

FIG. 43. $W+$jets cross section as a function of $y(\ell) + y(\text{first jet})$ for events with ≥ 1 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.
FIG. 44. W+jets cross section as a function of ΔR(first jet, second jet) for events with ≥ 2 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.

FIG. 45. W+jets cross section as a function of y(first jet) − y(second jet) for events with ≥ 2 jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.
FIG. 46. \(W + \text{jets} \) cross section as a function of \(\Delta \phi(\text{first jet, second jet}) \) for events with \(\geq 2 \) jets. Shown are predictions from ALPGEN, SHERPA, and BLACKHAT-SHERPA, and the ratio of theoretical predictions to data.
Department of Physics, Brandeis University, Waltham MA, United States of America

(a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, Carleton University, Ottawa ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

(e) Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (f) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan
Laboratorio de Instrumentacao e Fisica Experimental de Partículas - LIP, Lisboa, Portugal; Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

Czech Technical University in Prague, Praha, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina SK, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

INFN Sezione di Roma I; Dipartimento di Fisica, Università La Sapienza, Roma, Italy

INFN Sezione di Roma Tor Vergata; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre; Dipartimento di Fisica, Università Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Johannesburg, Johannesburg; School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University; The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

TRIUMF, Vancouver BC; Department of Physics and Astronomy, York University, Toronto ON, Canada

Institute of Pure and Applied Sciences, University of Tsukuba,1-1-1 Tennodai,Tsukuba, Ibaraki 305-8571, Japan

Science and Technology Center, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics, University of California Irvine, Irvine CA, United States of America

INFN Gruppo Collegato di Udine; ICTP, Trieste; Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica y Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
a Also at Laboratorio de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciências e CFNUL, Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Novosibirsk State University, Novosibirsk, Russia
g Also at Fermilab, Batavia IL, United States of America
h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
i Also at Università di Napoli Parthenope, Napoli, Italy
j Also at Institute of Particle Physics (IPP), Canada
k Also at Department of Physics, Middle East Technical University, Ankara, Turkey
l Also at Louisiana Tech University, Ruston LA, United States of America
\(m\) Also at Department of Physics and Astronomy, University College London, London, United Kingdom
n Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
o Also at Department of Physics, University of Cape Town, Cape Town, South Africa
p Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
q Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
r Also at Manhattan College, New York NY, United States of America
s Also at School of Physics, Shandong University, Shandong, China
t Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
u Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
v Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
w Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
x Also at Section de Physique, Université de Genève, Geneva, Switzerland
y Also at Departamento de Física, Universidade de Minho, Braga, Portugal
z Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ab Also at California Institute of Technology, Pasadena CA, United States of America
ac Also at Institute of Physics, Jagiellonian University, Krakow, Poland
ad Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
ae Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
af Also at Department of Physics, Oxford University, Oxford, United Kingdom
ag Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
ah Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
ai Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
* Deceased