Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb⁻¹ of pp collision data at \(\sqrt{s} = 7 \) TeV with ATLAS
(The ATLAS Collaboration)

A search for the Standard Model Higgs boson is performed in the diphoton decay channel. The data used corresponds to an integrated luminosity of 4.9 fb⁻¹ collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of \(\sqrt{s} = 7 \) TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The Standard Model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV.

PACS numbers: 14.80.Bn, 12.15.Ji, 14.70.Bh

The Higgs mechanism \[1\] is one of the best-motivated processes to explain electroweak (EW) symmetry breaking. In the Standard Model (SM), this mechanism explains the generation of the W and Z boson masses and predicts the existence of the only elementary scalar in the SM, the hypothetical Higgs boson. Prior direct searches at LEP, Tevatron and LHC exclude the SM Higgs boson with a mass \(m_H < 144.4 \) GeV and \(145 < m_H < 206 \) GeV at 95% confidence level (CL) \[2\],[4]. The present search for \(H \to \gamma\gamma \) uses the full 2011 data sample collected by ATLAS at 7 TeV center-of-mass energy and updates prior results with 1.08 fb⁻¹ \[3\].

The ATLAS detector \[6\] consists of an inner tracking detector surrounded by a superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The main subdetectors relevant to the search presented here are the calorimeters, in particular the electromagnetic section, and the inner tracking system. The inner detector provides tracking in the pseudorapidity region \(|\eta| < 2.5 \) and consists of silicon pixel- and microstrip-detectors inside a transition radiation tracker. The electromagnetic calorimeter, a lead/liquid-argon sampling device, is divided in one barrel \((|\eta| < 1.475)\) and two end-cap \((1.375 < |\eta| < 3.2)\) sections. The barrel \((|\eta| < 0.8)\) and extended barrel \((0.8 < |\eta| < 1.7)\) hadron calorimeter sections consist of steel and scintillating tiles, while the end-cap sections \((1.5 < |\eta| < 3.2)\) are composed of copper and liquid argon.

The data were recorded using a diphoton trigger \[7\], each photon having a transverse energy, \(E_T \), of at least 20 GeV, seeded by a lower-level trigger that required two clusters in the electromagnetic calorimeter with \(E_T > 12 \) or 14 GeV, depending on the data-taking period. The trigger efficiency for the signal events passing the final offline selection is 99%. After applying data quality requirements, the total integrated luminosity of the dataset used in this analysis is 4.9 ± 0.2 fb⁻¹ \[8\].

Events are required to contain at least one vertex with at least three associated tracks, where the transverse momentum, \(p_T \), of each track is required to be larger than 0.4 GeV, as well as two photon candidates each seeded by an energy cluster in the electromagnetic calorimeter with \(E_T > 2.5 \) GeV. Photons that convert to electron-positron pairs in the inner detector leave one or two tracks that are reconstructed and matched to the clusters in the calorimeter. The photon energy is calibrated separately for converted and unconverted photon candidates using Monte Carlo (MC) simulations of the detector \[9\]. A correction, depending on pseudorapidity and typically of the order of ±1%, is applied to the calibrated photon energy as obtained from studies using \(Z \to ee \) decays in data \[10\]. Photons are reconstructed in the fiducial region \(|\eta| < 2.37 \), excluding the calorimeter barrel/end-cap transition regions \(1.37 < |\eta| < 1.52 \). The photon candidates are ordered in \(E_T \) and the leading (subleading) candidate is required to have \(E_T > 40 \) GeV (25 GeV). Both candidates are required to pass further identification criteria based on shower shapes measured in the electromagnetic calorimeter and on the energy leakage into the hadron calorimeter \[11\]. The photon reconstruction and identification efficiency ranges typically from 65% to 95% for \(E_T \) in the range 25 to 80 GeV. The two photon candidates are required to be isolated by having at most 5 GeV energy deposited in the calorimeters in a cone of \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4 \) around the candidate, where \(\phi \) is the azimuthal angle, after subtracting the energy assigned to the photon itself. The measured isolation \[11\] is corrected for lateral shower leakage and ambient energy from multiple proton-proton interactions (pileup), following the method in Ref. \[12\]. The isolation cut retains \(\sim 87\% \) of Higgs boson signal events with \(m_H = 120 \) GeV while rejecting \(\sim 44\% \) of the selected data, which includes jets that can be misidentified as photons.

The opening angle of the two photons, used in the calculation of their invariant mass, is determined using the trajectories of the photons. For a converted photon with a well-measured conversion vertex, the trajectory is determined from the straight line between the barycenter
of the associated energy deposits in the calorimeter and the conversion vertex. Otherwise, the trajectory is determined from the barycenters of the showers in the first and second layers of the calorimeter. The extrapolation of the trajectories as well as the average beam spot position are used to determine the origin of the photons along the beam axis, z. The resolution of the z vertex coordinate is ~ 6 mm on average for two converted photons with reconstructed tracks, and ~ 15 mm otherwise. The contribution of the resulting angular resolution to the mass resolution is negligible in comparison to that of the energy resolution.

In total 22489 events pass the selection in the diphoton mass range 100–160 GeV. To confirm the dominance of the diphoton processes ($\gamma\gamma$) over backgrounds with one or two misidentified jets (γj, jj), the composition of the selected sample is estimated using the data. A sideband technique is used to estimate the numbers of $\gamma\gamma$, γj or jj events. The fraction of true diphoton events is estimated to be $(71 \pm 5)\%$. The amount of Drell-Yan background is estimated by selecting $Z \rightarrow ee$ decays in data where either one or both electrons pass the photon selection. The measured composition is summarized in Table I and is compatible with MC expectations. This decomposition is not directly used in the signal search; however, it is used to validate the parametrization of the background fit (see below).

<table>
<thead>
<tr>
<th>Category</th>
<th>σ_{CB}</th>
<th>FWHM</th>
<th>N_S</th>
<th>N_D</th>
<th>S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconverted central, low p_T</td>
<td>1.4</td>
<td>3.4</td>
<td>9.1</td>
<td>1763</td>
<td>0.05</td>
</tr>
<tr>
<td>Unconverted central, high p_T</td>
<td>1.4</td>
<td>3.3</td>
<td>2.6</td>
<td>235</td>
<td>0.11</td>
</tr>
<tr>
<td>Unconverted rest, low p_T</td>
<td>1.7</td>
<td>4.0</td>
<td>17.7</td>
<td>6234</td>
<td>0.02</td>
</tr>
<tr>
<td>Unconverted rest, high p_T</td>
<td>1.6</td>
<td>3.9</td>
<td>4.7</td>
<td>1006</td>
<td>0.04</td>
</tr>
<tr>
<td>Converted central, low p_T</td>
<td>1.6</td>
<td>3.9</td>
<td>6.0</td>
<td>1318</td>
<td>0.03</td>
</tr>
<tr>
<td>Converted central, high p_T</td>
<td>1.5</td>
<td>3.6</td>
<td>1.7</td>
<td>184</td>
<td>0.08</td>
</tr>
<tr>
<td>Converted rest, low p_T</td>
<td>2.0</td>
<td>4.7</td>
<td>17.0</td>
<td>7311</td>
<td>0.01</td>
</tr>
<tr>
<td>Converted rest, high p_T</td>
<td>1.9</td>
<td>4.5</td>
<td>4.8</td>
<td>1072</td>
<td>0.03</td>
</tr>
<tr>
<td>Converted transition</td>
<td>2.3</td>
<td>5.9</td>
<td>8.5</td>
<td>3366</td>
<td>0.01</td>
</tr>
</tbody>
</table>

All categories | 1.7 | 4.1 | 72.1 | 22489| 0.02|

The events are separated into nine mutually exclusive categories with different mass resolutions and signal-to-background ratios, to increase the sensitivity to a possible Higgs boson signal. Categories are defined by the conversion status, η of the selected photons, and p_T, the component of the diphoton p_T that is orthogonal to the thrust axis, as proposed in Ref. [13]. Events with two unconverted photons are separated into unconverted central ($|\eta| < 0.75$ for both candidates) and unconverted rest (all other events). Events with at least one converted photon are separated into converted central ($|\eta| < 0.75$ for both candidates), converted transition (at least one photon with $1.3 < |\eta| < 1.75$) and converted rest (all other events). Excluding the converted transition category, each category is further divided by a cut at $p_T=40$ GeV into two categories, low p_T and high p_T. MC studies show that signal events, particularly those produced in vector-boson fusion (VBF) or in associated production (W/ZH and ttH), have on average larger p_T than background events. The number of data events in each category is given in Table II.

The distribution of the invariant mass of the diphoton events, $m_{\gamma\gamma}$, summed over all categories, is shown in Fig. 1. The sum of the background-only fits (described below) to the invariant mass in each of the categories is superimposed. The signal expectation for a SM Higgs boson with $m_H = 120$ GeV is also shown. The presence of the Higgs boson will appear as a narrow resonance in the invariant mass of the selected photon pairs superimposed on a smoothly falling background. The residual of the data with respect to the total background as a function of $m_{\gamma\gamma}$ is also shown in Fig. 1.

Higgs boson production and decay are simulated with several MC samples that are passed through a full detector simulation using GEANT4. Pileup effects are simulated by overlaying each MC event with a variable number of MC inelastic proton-proton collisions, interfaced to PYTHIA for showering and hadronization, is used for generation of gluon fusion and VBF production. PYTHIA is used to generate the Higgs boson production in association with W/Z and tt.

The Higgs boson production cross sections are computed up to next-to-next-to-leading order (NNLO) in QCD for the gluon fusion process. In addition, QCD soft-gluon resummations up to next-to-next-to-leading order (NNLL) improve the NNLO calculation. The next-to-leading order (NLO) EW corrections are applied assuming factorisation between QCD and EW corrections. These results are compiled in Refs. [22]. The W/ZH processes are calculated with full NLO QCD and EW corrections, and approximate NNLO QCD corrections are available [23].
are calculated at NLO \cite{26} and at NNLO \cite{27}, and NLO EW radiative corrections \cite{28} are applied. The full NLO QCD corrections for \(t\bar{t}H \) are calculated \cite{29}. The Higgs boson cross sections, branching ratios \cite{30} and their uncertainties are compiled in Ref. \cite{31}.

The cross sections multiplied by the branching ratio into two photons are listed in Table III. The number of signal events produced by gluon fusion is rescaled to account for differences observed between the data \cite{11} and the photon energy resolution is taken into account. The MC events are scaled to correspond to 4.9 fb\(^{-1}\) of data. The uncertainty is then the maximal difference between the MC shape and the true background will contribute to an excess or a deficit of events over background expectations. In order to take this into account in a conservative way, a term is included in the likelihood function that allows for a signal-like component that is consistent with the background uncertainty. For each category this uncertainty is estimated from MC by the difference between the mass distribution of diphoton events generated with RESBOS and the result of the exponential fit to this distribution. Photon reconstruction and identification efficiencies are taken into account. The MC events are scaled to correspond to 4.9 fb\(^{-1}\) of data. The uncertainty is then the maximal difference between the MC shape and the model integrated in a sliding mass window of 4 GeV, the approximate FWHM of the expected signal. The uncertainties obtained are \(\pm (0.1\,\text{to}\,7.9) \) events depending on the category. Pseudo experiments are used to check that the sum of diphoton events produced by the RESBOS \cite{33} and DIPHOX \cite{30} MC generators.

The shower shape variables of the simulated samples are shifted to agree with the corresponding distributions in the data \cite{11} and the photon energy resolution is broadened to account for differences observed between \(Z \to ee \) data and MC events. Events generated with POWHEG at NLO have been reweighted to match the Higgs boson \(p_T \) distribution predicted by HQT \cite{33}. The signal yields expected for 4.9 fb\(^{-1}\) and selection efficiencies are given in Table III.

The invariant mass shape of the signal in each category is modeled by the sum of a Crystal Ball function \cite{34} describing the core of the distribution with a width \(\sigma_{CB} \), and a wide Gaussian with a small amplitude describing the tails of the mass distribution. In Fig. 2 the sum of all signal processes in all categories is shown for a Higgs boson with \(m_H = 120 \text{ GeV} \). The expected full-width-at-half-maximum (FWHM) is 4.1 GeV and \(\sigma_{CB} \) is 1.7 GeV. The resolution varies with category (see Table III). The signal-to-background ratio (S/B), calculated in a mass window symmetric about the signal maximum and containing 90% of the signal, varies from 0.11 to 0.01 depending on the category and is also shown in Table III.

The background in each category is estimated from the data by fitting the diphoton mass spectrum in the range 100–160 GeV with an exponential function with free slope and normalization parameters. The background curve in Fig. 1 is the sum of these nine contributions. For each category, a single exponential fit satisfactorily describes the mass spectrum. This has been checked using large samples of diphoton events produced by the RESBOS \cite{33} and DIPHOX \cite{30} MC generators.

The difference between the exponential function and the true background will contribute to an excess or a deficit of events over background expectations. In order to take this into account in a conservative way, a term is included in the likelihood function that allows for a signal-like component that is consistent with the background uncertainty. For each category this uncertainty is estimated from MC by the difference between the mass distribution of diphoton events generated with RESBOS and the result of the exponential fit to this distribution. Photon reconstruction and identification efficiencies are taken into account. The MC events are scaled to correspond to 4.9 fb\(^{-1}\) of data. The uncertainty is then the maximal difference between the MC shape and the model integrated in a sliding mass window of 4 GeV, the approximate FWHM of the expected signal. The uncertainties obtained are \(\pm (0.1\,\text{to}\,7.9) \) events depending on the category. Pseudo experiments are used to check that the sum of diphoton events produced by the RESBOS \cite{33} and DIPHOX \cite{30} MC generators.

The invariant mass distribution for the selected data sample, overlaid with the total background (see text). The bottom inset displays the residual of the data with respect to the total background. The Higgs boson expectation for a mass hypothesis of 120 GeV corresponding to the SM cross section is also shown.

The cross sections multiplied by the branching ratio into two photons are listed in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the \(gg \to \gamma\gamma \) continuum background and the \(gg \to H \to \gamma\gamma \) process \cite{32}, leading to a reduction of the production rate by 2–5% depending on \(m_H \) and analysis category. The fractions of gluon-fusion, VBF, \(WH, ZH \) and \(t\bar{t}H \) production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for \(m_H = 120 \text{ GeV} \). The background in each category is estimated from the data by fitting the diphoton mass spectrum in the range 100–160 GeV with an exponential function with free slope and normalization parameters. The background curve in Fig. 1 is the sum of these nine contributions. For each category, a single exponential fit satisfactorily describes the mass spectrum. This has been checked using large samples of diphoton events produced by the RESBOS \cite{33} and DIPHOX \cite{30} MC generators.

The difference between the exponential function and the true background will contribute to an excess or a deficit of events over background expectations. In order to take this into account in a conservative way, a term is included in the likelihood function that allows for a signal-like component that is consistent with the background uncertainty. For each category this uncertainty is estimated from MC by the difference between the mass distribution of diphoton events generated with RESBOS and the result of the exponential fit to this distribution. Photon reconstruction and identification efficiencies are taken into account. The MC events are scaled to correspond to 4.9 fb\(^{-1}\) of data. The uncertainty is then the maximal difference between the MC shape and the model integrated in a sliding mass window of 4 GeV, the approximate FWHM of the expected signal. The uncertainties obtained are \(\pm (0.1\,\text{to}\,7.9) \) events depending on the category. Pseudo experiments are used to check that the sum of diphoton events produced by the RESBOS \cite{33} and DIPHOX \cite{30} MC generators.
TABLE III. Higgs boson production cross section multiplied
by the branching ratio into two photons, expected number of
signal events summed over all categories for 4.9 fb$^{-1}$ and
selection efficiencies for various Higgs boson masses.

<table>
<thead>
<tr>
<th>m_H [GeV]</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>135</th>
<th>140</th>
<th>145</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma \times BR$ [fb]</td>
<td>45</td>
<td>44</td>
<td>43</td>
<td>40</td>
<td>36</td>
<td>32</td>
<td>27</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>Signal events</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>69</td>
<td>65</td>
<td>58</td>
<td>50</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td>Efficiency [%]</td>
<td>31</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>37</td>
<td>37</td>
<td>38</td>
<td>38</td>
<td>39</td>
</tr>
</tbody>
</table>

that have more degrees of freedom than the single exponenti-
and comparing the residuals to those obtained with the exponen-
tial fit.

The dominant experimental uncertainty on the signal yield is the photon reconstruction and identification ef-
ciciency ($\pm 11\%$), which is estimated with data by using
electrons from Z and W decays and photons selected
from $Z \rightarrow \ell\ell\gamma$ ($\ell = e, \mu$) events. Pileup also affects
the identification efficiency and contributes to the uncer-
tainty ($\pm 4\%$). Further uncertainties on the signal yield are related to the trigger ($\pm 1\%$), Higgs boson p_T
modeling ($\pm 1\%$), isolation ($\pm 5\%$) and luminosity ($\pm 3.9\%$).

The total uncertainty on the signal yield is $\pm 20\%$. The total un-
certainty on the mass resolution is $\pm 14\%$, dominated by the uncer-
tainty on the energy resolution of the calorime-
ter, determined from $Z \rightarrow ee$ events ($\pm 12\%$). Further uncer-
tainties on the mass resolution result from an im-
perfect knowledge of material in front of the calorimeter
affecting the extrapolation from electron to photon cal-
ibration ($\pm 6\%$), the impact of pileup ($\pm 3\%$) estimated
from events taken with random triggers, and the pho-
ton angle measurement ($\pm 1\%$) estimated using $Z \rightarrow ee$
events. The uncertainty on the knowledge of the material
in front of the calorimeter is used to derive the amount of
event migration between the converted and unconverted
categories ($\pm 4.5\%$). Different PDFs and scale variations
in HqT calculations are used to derive possible event
migration between high and low p_T categories ($\pm 8\%$).

A modified frequentist approach (CL_S) [38] for set-
ting limits and a frequentist approach to calculate the p_0
value are used [39]. The p_0 is the probability that the back-
ground fluctuates to the observed number of events or higher.
The combined likelihood, which is a function of the ratio of the measured cross-section relative to that of
the SM prediction, is constructed from the unbinned likelihood functions of the nine categories. Systematic
uncertainties are incorporated by introducing nuisance parameters with constraints. Asymptotic formulae [40]
are used to derive the limits and p_0 values, which are
refined with pseudo experiments [41], as functions of the hypothetical Higgs boson mass.

The observed and expected local p_0 values and the
95% CL limits on the Higgs boson production in units of
the SM cross section are displayed in Figs. 3 and 4.

Before considering the uncertainty on the signal mass po-
sition, the largest excess with respect to the background-
only hypothesis in the mass range 110–150 GeV is ob-
served at 126.5 GeV with a local significance of 2.9 stan-
dard deviations. The uncertainty on the mass position
(± 0.7 GeV) due to the imperfect knowledge of the photon
energy scale has a small effect on the significance. When this uncertainty is taken into account, the significance is
2.8 standard deviations; this becomes 1.5 standard devi-
ations when the look elsewhere effect [42] for the mass
range 110–150 GeV is included. The median expected
upper limits of the cross section in the absence of a true
signal, at the 95% CL, vary between 1.6 and 1.7 times the
SM cross section in the mass range 115–130 GeV, and
between 1.6 and 2.7 in the mass range 110–150 GeV. The observed 95% CL upper limit of the cross section relative
to the SM cross section is between 0.83 and 3.6 over the
full mass range. A SM Higgs boson is excluded at 95% CL
in the mass ranges of 113–115 GeV and 134.5–136 GeV.

These results are combined with SM Higgs searches in
other decay channels in Ref. [41].

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions
without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWF, Austria;
ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP,
Brazil; NSERC, NRC and CFI, Canada; CERN; CONI-
CYT, Chile; CAS, MOST and NSFC, China; COLCIEN-
Higgs boson production normalized to the predicted cross section as a function of m_H.

CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; D NRF, D N S R C and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; R CN, Norway; MNISW, Poland; GRICES and FCT, Portugal; M E R S Y (M E C T S), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MST D, Sweden; MSSR, Slovakia; A R R S and MVZ T, Slovenia; DST/NRF, South Africa; M NIC CIN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[13] $p_T^1 = |\vec{p}_T^1 \times \vec{t}|$, where $\vec{t} = \vec{p}_T^1 \times \vec{p}_T^2$ denotes the transverse thrust, p_T^1 and p_T^2 are the transverse momenta of the two photons, and $p_T^1 = p_{\gamma 1}^T + p_{\gamma 2}^T$ is the transverse momentum of the diphoton system.

INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
Section de Physique, Université de Genève, Geneva, Switzerland
(a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy
(a)E.Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
Department of Physics, Hampton University, Hampton VA, United States of America
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
(a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington IN, United States of America
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Department of Physics, Józef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
99 Nagasaki Institute of Applied Science, Nagasaki, Japan
100 Graduate School of Science, Nagoya University, Nagoya, Japan
101 (a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
102 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
103 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
104 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
106 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107 Department of Physics, New York University, New York NY, United States of America
108 Ohio State University, Columbus OH, United States of America
109 Faculty of Science, Okayama University, Okayama, Japan
110 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
111 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
112 Palacký University, RCP TM, Olomouc, Czech Republic
113 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
114 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
115 Graduate School of Science, Osaka University, Osaka, Japan
116 Department of Physics, University of Oslo, Oslo, Norway
117 Department of Physics, Oxford University, Oxford, United Kingdom
118 (a)INFN Sezione di Pavia; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
119 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
120 Petersburg Nuclear Physics Institute, Gatchina, Russia
121 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
123 (a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
125 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
126 Czech Technical University in Prague, Praha, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina SK, Canada
130 Ritsumeikan University, Kusatsu, Shiga, Japan
131 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
132 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
133 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
134 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco
135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
137 Department of Physics, University of Washington, Seattle WA, United States of America
138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139 Department of Physics, Shinshu University, Nagano, Japan
140 Fachbereich Physik, Universität Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby BC, Canada
142 SLAC National Accelerator Laboratory, Stanford CA, United States of America
143 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144 (a)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the
Witwatersrand, Johannesburg, South Africa
(145) Department of Physics, Stockholm University; (146) The Oskar Klein Centre, Stockholm, Sweden
(147) Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
(148) Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
(149) School of Physics, University of Sydney, Sydney, Australia
(150) Institute of Physics, Academia Sinica, Taipei, Taiwan
(151) Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
(152) Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
(153) Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
(154) International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
(155) Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
(156) Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
(157) Department of Physics, University of Toronto, Toronto ON, Canada
(158) TRIUMF, Vancouver BC; (159) Department of Physics and Astronomy, York University, Toronto ON, Canada
(160) School of Physics, University of British Columbia, Vancouver BC, Canada
(161) Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
(162) Waseda University, Tokyo, Japan
(163) INFN Gruppo Collegato di Udine; (164) ICTP, Trieste; (165) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
(166) Department of Physics, University of Illinois, Urbana IL, United States of America
(167) Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
(168) Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
(169) Department of Physics, University of British Columbia, Vancouver BC, Canada
(170) Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
(171) Waseda University, Tokyo, Japan
(172) Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
(173) Department of Physics, University of Wisconsin, Madison WI, United States of America
(174) Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California
(175) Department of Physics, University of British Columbia, Vancouver BC, Canada
(176) Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
(177) Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
(178) Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
(179) Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
(180) Also at TRIUMF, Vancouver BC, Canada
(181) Also at Department of Physics, California State University, Fresno CA, United States of America
(182) Also at Novosibirsk State University, Novosibirsk, Russia
(183) Also at Fermilab, Batavia IL, United States of America
(184) Also at Department of Physics, University of Coimbra, Coimbra, Portugal
(185) Also at Università di Napoli Parthenope, Napoli, Italy
(186) Also at Institute of Particle Physics (IPP), Canada
(187) Also at Department of Physics, Middle East Technical University, Ankara, Turkey
(188) Also at Louisiana Tech University, Ruston LA, United States of America
(189) Also at Department of Physics and Astronomy, University College London, London, United Kingdom
(190) Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
(191) Also at Department of Physics, University of Cape Town, Cape Town, South Africa
(192) Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
(193) Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
(194) Also at Manhattan College, New York NY, United States of America
Also at School of Physics, Shandong University, Shandong, China
\(^i\) Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
\(^u\) Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
\(^v\) Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
\(^w\) Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
\(^x\) Also at Section de Physique, Université de Genève, Geneva, Switzerland
\(^y\) Also at Departamento de Física, Universidade de Minho, Braga, Portugal
\(^z\) Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
\(^aa\) Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
\(^ab\) Also at California Institute of Technology, Pasadena CA, United States of America
\(^ac\) Also at Institute of Physics, Jagiellonian University, Krakow, Poland
\(^ad\) Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
\(^ae\) Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
\(^af\) Also at Department of Physics, Oxford University, Oxford, United Kingdom
\(^ag\) Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
\(^ah\) Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
\(^ai\) Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
\(^*\) Deceased