Search for Production of Resonant States in the Photon+Jet Mass Distribution using \(pp \) Collisions at \(\sqrt{s} = 7 \) TeV Collected by the ATLAS Detector

ATLAS Collaboration

This Letter describes a model-independent search for production of new resonant states in photon+jet events in 2.11 fb\(^{-1}\) of proton-proton collisions at \(\sqrt{s} = 7 \) TeV. We compare the photon+jet mass distribution to a background model derived from data and find consistency with the background hypothesis. Given the lack of evidence for a signal, we set 95\% CL limits on generic Gaussian-shaped signals and on a benchmark excited-quark \((q^*)\) model, excluding 2 TeV Gaussian resonances with cross section times branching fraction times acceptance times efficiency near 5 fb and excluding \(q^*\) masses below 2.46 TeV, respectively.

PACS numbers: 12.60.-i,13.85.Rm,14.70.Bh,14.80-j

In the Standard Model (SM), proton-proton \((pp)\) collisions do not produce photon+jet pairs through a resonance. Direct photon+jet production occurs at tree level via Compton scattering of a quark and a gluon or through quark-antiquark annihilation, the former accounting for the majority of direct photon+jet production at all center-of-mass energies. Events with a high transverse momentum photon and one or more jets can also arise from radiation off final-state quarks or from multi-jet processes where dijet or higher-order events produce secondary photons during fragmentation of the hard-scatter quarks and gluons. The photon+jet invariant mass \(m_{\gamma j}\) distribution resulting from this mixture of processes is smooth and rapidly falling, constituting a promising place to look for resonances.

Despite many possible exotic production mechanisms such as excited quarks, quarks, and topological pions, the most recent searches for photon+jet resonances were published a decade ago. The previous most sensitive search for new phenomena in the photon+jet final state places limits on effective signal cross sections, cross section times branching fraction times acceptance times efficiency, of the order of 1 pb and on excited-quark masses up to 460 GeV at the 95\% confidence level.

This Letter describes a general search for resonant s-channel photon+jet production in 2.11 fb\(^{-1}\) of \(pp \) collisions at a center-of-mass energy \(\sqrt{s} = 7 \) TeV with the ATLAS detector. It follows earlier measurements of isolated photon differential cross sections at the Large Hadron Collider (LHC). The entire \(m_{\gamma j}\) distribution is fit to a smooth function to obtain the background to this search. We look for evidence of a narrow resonance, not much wider than the detector mass resolution. This search extends the method used in the search for resonant dijet production to handle the more divergent mixture of processes contributing to the \(m_{\gamma j}\) distribution. In the absence of signal, we use Bayes’ theorem to set limits on Gaussian-shaped resonances and on a benchmark excited-quark \((q^*)\) model.

In the excited-quark model studied here, the LHC could produce single \(q^*\) states with vector-like couplings to the \(W\) and \(Z\) gauge bosons via the absorption of a gluon by a quark. As in Ref.\(,\) we define the model by one parameter, the excited-quark mass \(m_{q^*}\), setting the compositeness scale equal to \(m_{q^*}\) and \(SU(3), SU(2),\) and \(U(1)\) coupling multipliers \(f_s = f = f' = 1\). At \(m_{q^*} = 2.5\) TeV, this gives branching fractions for \(u^* \rightarrow uq\) and \(u^* \rightarrow W^*\) of 0.85 and 0.02, respectively. The corresponding branching fractions for \(d^*\) quarks are 0.85 and 0.005, respectively. We do not make any further assumptions about higher-order corrections or the excited-quark dynamics and neglect scale uncertainties and uncertainties on parton distribution functions (PDFs) in order to provide a convenient benchmark process for theoretical reinterpretation.

We simulate the SM direct photon processes and the \(q^*\) model with PYTHIA 6.4.25\(,\) using the AMBT1 tune, MSTW2007 PDFs\(,\) and a GEANT4-based detector simulation. Supplementary studies of the background shape function are performed with next-to-leading-order JETPHOX 1.3.0\(,\) Additional inelastic \(pp\) interactions, termed pile-up, are included in the event simulation, distributed so as to reproduce the number of collisions per bunch crossing in the data. The mean number of pile-up interactions is approximately 6.

A detailed description of the detector is available in Ref.\(,\) Photons are detected by a lead/liquid-argon sampling electromagnetic calorimeter (EMC) with an accordion geometry. In front of the EMC, the inner detector allows an accurate reconstruction of tracks from the primary \(pp\) collision point and also from secondary vertices, permitting an efficient reconstruction of photon conversions in the inner detector up to a radius of 80 cm. For \(|\eta| < 1.37\), an iron/scintillator-tile calorimeter behind the EMC provides hadronic coverage. The endcap and forward regions, \(1.5 < |\eta| < 4.9\), are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. For further details relevant to photon identification and measurement, see Ref.\(,\)
For details relevant to jet detection and measurement, see Ref. 30. Events are collected with a trigger requiring at least one photon candidate with transverse momentum \(p_T \) above 80 GeV. The integrated luminosity of the sample is \((2.11 \pm 0.08) \text{ fb}^{-1} \).\(^32,33\)

Events containing at least one photon and at least one jet are selected for analysis. Each event must have a primary vertex with at least five charged-particle tracks with \(p_T > 400 \text{ MeV} \). Multiple vertices can appear when pile-up interactions occur for the same bunch crossing. If more than one vertex is found, the primary vertex is taken as the vertex with the highest scalar sum \(p_T^2 \) of associated tracks. Photon candidates with \(p_T > 85 \text{ GeV} \) and \(|\eta| < 1.37 \) and jet candidates with \(p_T > 30 \text{ GeV} \) and \(|\eta| < 2.8 \) are used. These objects are identified using criteria that closely follow those applied in the isolated photon cross section measurement \(20\) and dijet resonance search \(22\). Subleading photons or jets are allowed; when more than one photon or jet is found, the highest \(p_T \) candidates are selected to constitute the photon-jet pair.

Jets are reconstructed from clusters of calorimeter cells using the anti-\(k_t \) clustering algorithm \(34\) with radius parameter \(R = 0.6 \). Jet energies are corrected to the hadronic scale \(30,31\). Jet candidates are rejected in regions of the calorimeter where the jet energy is not yet measured in an optimal way. Candidates consistent with spurious calorimeter noise or energy spikes are also rejected.

Photon candidates are reconstructed from clusters in the electromagnetic calorimeter and tracking information provided by the inner detector. They satisfy standard ATLAS selection criteria that are designed to reject instrumental backgrounds from hadrons \(20\). The photon candidates must meet \(p_T \)- and \(\eta \)-dependent requirements on hadronic leakage, shower shapes in the electromagnetic strip layer, and shower shapes in the second sampling layer of the electromagnetic calorimeter. Inner detector tracking information is used to reject electrons and to recover photons converted to \(e^+e^- \) pairs. Energy calibrations are applied to photon candidates to account for energy loss in front of the electromagnetic calorimeter and for both lateral and longitudinal leakage. Events are discarded if the leading photon appears in calorimeter cells affected by noise bursts or transient hardware problems.

These photon identification criteria reduce instrumental backgrounds to a negligible level, but much of the substantial background from secondary (jet fragmentation) photons remains. We reduce this background with requirements on nearby calorimeter activity. Associated “isolation” calorimeter energy near the photon candidate is calculated by summing the transverse momentum as measured in electromagnetic and hadronic calorimeter cells inside a cone of radius \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4 \) centered on the photon cluster, but excluding the energy of the photon cluster itself. The isolation energy is corrected on an event-by-event basis for the ambient energy density due to pile-up and the underlying event. This isolation energy is required to be less than 7 GeV.

The photon deposits energy in the electromagnetic calorimeter in such a way as also to be reconstructed as a jet. Jets within \(\Delta R < 0.2 \) of the photon are therefore not considered in this analysis. We require an angular separation \(\Delta R(\gamma, \text{jet}) > 0.6 \) between the signal photon and all jets with \(p_T > 30 \text{ GeV} \) to reduce the background from photons during fragmentation of final state quarks (fragmentation photons) and to reduce the systematic effects from leakage of nearby jet showers into the photon isolation energy measurement.

Additional reduction of fragmentation photon background is achieved by requirements on the photon and jet pseudorapidities. Dijet production rates increase with jet pseudorapidity whereas rates for our assumed \(s \)-channel signal would diminish. We restrict the analysis to photons in the barrel calorimeter, \(|\eta| < 1.37 \), and require \(|\eta_\gamma - \eta_\text{jet}| < 1.4 \) between the photon and jet. The former criterion was chosen to avoid kinematic bias of the \(m_\gamma\text{jet} \) distribution due to inclusion of any \(\eta \) range where reconstruction efficiency is lower, such as the barrel-endcap transition region \(1.37 < |\eta| < 1.52 \). The latter was chosen by optimizing expected significance using the \(|\eta_\gamma - \eta_\text{jet}| \) distributions found in excited-quark signal simulation and background-dominated control data selected as in the nominal analysis but inverting the photon isolation requirement. This control sample is also used to check the background estimate.

After the above selections, Fig. 1 shows the distribution of the \(m_\gamma\text{jet} \) invariant mass in bins equal to the mass resolution. The \(m_\gamma\text{jet} \) resolution is about 4\% at 600 GeV, improving to 3\% at 2 TeV. We determine the combined SM and instrumental background to the search by fitting this distribution to the four-parameter ansatz

\[
f(x \equiv m_\gamma\text{jet} / \sqrt{s}) = p_1(1-x)^{p_2} x^{-p_3-p_4 \ln x}. \tag{1}\]

The motivation for this function is discussed in Ref. 10, 32, 37. The fit result is also shown in Fig. 4. The bottom panel of the figure shows the statistical significance of the difference between data and the fit in each bin \(38\). With a negative log-likelihood test statistic, the \(p \)-value is 23\%, indicating the data distribution is compatible with Eq. 1. The functional form also describes the leading-order PYTHIA direct photon prediction for comparable event statistics.

We search for statistical evidence of a resonance in this distribution using the BUMPHUNTER algorithm \(39\). The algorithm operates on the binned \(m_\gamma\text{jet} \) distribution, comparing the background estimate with the data in mass intervals of varying contiguous bin multiplicities across the entire distribution. For each interval in the scan, it computes the significance of any excess found. The algorithm identifies the interval 784–1212 GeV, indicated by the vertical lines in Fig. 4, as the single most discrepant
FIG. 1. Invariant mass of the photon+jet pair for events passing the final selection. Overlaid: the fitted background function integrated over each bin (stepped solid line), the most discrepant region identified by BumpHunter (two dashed vertical lines), and three examples of excited-quark signals, normalized to luminosity, as described in the text. The bottom panel shows the statistical significance of the difference between data and background in each bin.

interval. The significance of the outcome is evaluated using the ensemble of possible outcomes for the significance of any region in the distribution in the background-only hypothesis, obtained by repeating the analysis on pseudodata drawn from the background function. Before including systematic uncertainties, the probability (p-value) of observing a background fluctuation at least as significant as the above, including the trials factor, or “look-elsewhere” effect, is 20%. Inclusion of systematic uncertainties renders the p-value similarly large.

Lacking evidence of any signal, we exclude two types of photon+jet signals: a generic signal with Gaussian distribution and arbitrary production cross section, and the excited-quark model. We compute Bayesian limits at 95% credibility level (CL) using a prior probability density that is constant for positive values of the signal production cross section and zero for unphysical, negative values, as described in Ref. 40. We consider systematic uncertainties on expected signal yield due to imperfect knowledge of the detector: the integrated luminosity (3.7%), trigger efficiencies (<0.5%), and signal photon identification efficiencies (2.0%). The last of these consists of isolation (0.4%), pile-up interactions (0.5%), conversions (1.2%), simulation mismodeling (1.3%), and the extrapolation of the photon identification efficiency to high p_T (<0.3%). Uncertainties on photon energy scale (0.5–1.5%), jet energy scale (2–4%), and jet energy resolution (5–15%) contribute through their effects on the signal distribution. These systematic uncertainties are treated as marginalized Gaussian nuisance parameters in the limit calculation.

We also evaluate two systematic uncertainties on the background estimate. To account for the statistical uncertainties on the background fit parameters, we repeatedly fit the background function to pseudodata for each bin drawn from Poisson distributions. The mean of the Poisson distribution for a given bin corresponds to the number of entries actually observed in that bin in the data. We then take the variation in the fit predictions for a given bin, 0.5% of the background at low mass to almost 10% of the background at 2 TeV, as indicative of the systematic uncertainty. We treat this bin-by-bin uncertainty in the limit as fully correlated, using a single nuisance parameter that scales the entire background distribution.

While our function can describe the $m_{\gamma j}$ shape for direct photon production, as modeled in the PYTHIA direct photon+jet simulation, the function need not remain a good description of the full distribution after including nonisolated and fragmentation photon events. For example, the function describes the next-to-leading order prediction implemented in JETPHOX, which includes the fragmentation photon contributions, for some viable choices of theory parameters but not for others.

The second background systematic uncertainty accounts for any unmodeled features of fragmentation photon events in our isolated photon sample. We fit the background function to the $m_{\gamma j}$ distribution in the control data selected with the inverted isolation requirement, then measure for each $m_{\gamma j}$ bin the magnitude of any deviation from the fit, and assign the ratio of the deviation to the fit expectation as a parametrization bias systematic uncertainty. To extrapolate this uncertainty to large $m_{\gamma j}$ where few control data exist, we fit the tail $m_{\gamma j} > 1$ TeV with a two-degree polynomial.

Figure 2 shows the model-independent limits on the effective cross section, cross section σ times branching fraction B times acceptance A times efficiency ϵ, of a potential signal as a function of the central mass of each signal template. We take the signal lineshape to be a Gaussian distribution with one of three widths, $\sigma_G/m_G = 5\%$, 7\%, and 10\% of the central mass of the Gaussian. The limit weakens as the width increases and the peak becomes less distinct. For example, for a 1 TeV signal the limit for a width of 10\% is 1.6 times the limit for a width of 5\%.

The limit on the effective cross section in the excited-quark model is shown in Fig. 3 as a function of the q^+ mass. Also shown are $\pm 1\sigma$ and $\pm 2\sigma$ uncertainty bands indicating the underlying distribution of possible limit outcomes in the background-only hypothesis. The solid line indicates the prediction from the PYTHIA excited-quark implementation. We exclude such excited quarks
with masses below 2.46 TeV at 95% CL, complementing the more stringent exclusion below 2.99 TeV on this specific q^* model in the dijet final state 22.

In conclusion, the photon+jet mass distribution measured in 2.11 fb$^{-1}$ of pp collision data collected at $\sqrt{s} = 7$ TeV by the ATLAS Collaboration has been examined for narrow resonances. The observed distribution extends up to masses of about 2 TeV. It is well described by a smooth function fitted to it and assumed to represent the SM expectation. No evidence for the production of resonances is found. We set limits at 95% CL on Gaussian lineshape and excited-quark signal using Bayesian statistics. The limits on Gaussian resonances, for example, exclude 2 TeV resonances with effective cross sections near 5 fb. We also exclude the excited-quark model in the photon+jet final state for masses up to 2.46 TeV. The limits reported here on resonant production of new particles in the photon+jet final state are the most stringent limits set to date in this channel.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
5

[5] The invariant mass $m_{\gamma j}$ is defined as
\[\sqrt{(E_{\gamma} + E_{j})^2 - (\vec{p}_{\gamma} + \vec{p}_{j})^2}, \]
where E and \vec{p} denote the energy and momentum, respectively, of the photon and the jet.
[29] ATLAS uses a right-handed coordinate system with the z-axis along the beam pipe. The x-axis points to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, with azimuthal angle ϕ. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Transverse momentum and energy are defined as $p_T = p \sin \theta$ and $E_T = E \sin \theta$, respectively.
Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain

(a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

Department for Physics and Technology, University of Bergen, Bergen, Norway

Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America

Department of Physics, Humboldt University, Berlin, Germany

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

(a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul;
(c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey

(a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy

Physikalisches Institut, University of Bonn, Bonn, Germany

Department of Physics, Boston University, Boston MA, United States of America

Department of Physics, Brandeis University, Waltham MA, United States of America

(a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, Carleton University, Ottawa ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu;
(d) School of Physics, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, København, Denmark

(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

(a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
Netherlands
104 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
106 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107 Department of Physics, New York University, New York NY, United States of America
108 Ohio State University, Columbus OH, United States of America
109 Faculty of Science, Okayama University, Okayama, Japan
110 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
111 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
112 Palacký University, RCPTM, Olomouc, Czech Republic
113 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
114 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
115 Graduate School of Science, Osaka University, Osaka, Japan
116 Department of Physics, University of Oslo, Oslo, Norway
117 Department of Physics, Oxford University, Oxford, United Kingdom
118 (a)INFN Sezione di Pavia; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
119 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
120 Petersburg Nuclear Physics Institute, Gatchina, Russia
121 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
123 (a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
125 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
126 Czech Technical University in Prague, Praha, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina SK, Canada
130 Ritsumeikan University, Kusatsu, Shiga, Japan
131 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
132 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
133 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
134 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco
135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
137 Department of Physics, University of Washington, Seattle WA, United States of America
138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139 Department of Physics, Shinshu University, Nagano, Japan
140 Fachbereich Physik, Universität Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby BC, Canada
142 SLAC National Accelerator Laboratory, Stanford CA, United States of America
143 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144 (a)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
145 (a)Department of Physics, Stockholm University; (b)The Oskar Klein Centre, Stockholm, Sweden
146 Physics Department, Royal Institute of Technology, Stockholm, Sweden
147 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
148 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto ON, Canada
(a)TRIUMF, Vancouver BC; (b)Department of Physics and Astronomy, York University, Toronto ON, Canada
Institute of Pure and Applied Sciences, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
Science and Technology Center, Tufts University, Medford MA, United States of America
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
(a)INFN Gruppo Collegato di Udine; (b)ICTP, Trieste; (c)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana IL, United States of America
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMs), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
Faculty of Science, Hiroshima University, Hiroshima, Japan
Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
Also at Facultade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Novosibirsk State University, Novosibirsk, Russia
Also at Fermilab, Batavia IL, United States of America
Also at Department of Physics, University of Coimbra, Coimbra, Portugal
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Department of Physics, Middle East Technical University, Ankara, Turkey
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Department of Physics and Astronomy, University College London, London, United Kingdom
Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
Also at Department of Physics, University of Cape Town, Cape Town, South Africa
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Manhattan College, New York NY, United States of America
Also at School of Physics, Shandong University, Shandong, China
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat
a l’Energie Atomique), Gif-sur-Yvette, France

x Also at Section de Physique, Université de Genève, Geneva, Switzerland

y Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal

z Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

ab Also at California Institute of Technology, Pasadena CA, United States of America

ac Also at Institute of Physics, Jagiellonian University, Krakow, Poland

ad Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

ae Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

af Also at Department of Physics, Oxford University, Oxford, United Kingdom

ag Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

ah Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

ai Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

* Deceased