Search for anomalous Wtb couplings in single top quark production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

(The D0 Collaboration*)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Universidade Federal do ABC, Santo André, Brazil
5Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6University of Science and Technology of China, Hefei, People’s Republic of China
7University of los Andes, Bogotá, Colombia
8Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
9Czech Technical University in Prague, Prague, Czech Republic
10Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
11Universidad San Francisco de Quito, Quito, Ecuador
12LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
13LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
14CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
15LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
16LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
17CEA, Ifre, SPP, Saclay, France
18IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
19IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
20III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
21Physikalisches Institut, Universität Freiburg, Freiburg, Germany
22II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
23Institut für Physik, Universität Mainz, Mainz, Germany
24Ludwig-Maximilians-Universität München, München, Germany
25Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
26Panjab University, Chandigarh, India
27Delhi University, Delhi, India
28Tata Institute of Fundamental Research, Mumbai, India
29University College Dublin, Dublin, Ireland
30Korea Detector Laboratory, Korea University, Seoul, Korea
31CINVESTAV, Mexico City, Mexico
32Nikhef, Science Park, Amsterdam, the Netherlands
33Radboud University Nijmegen, Nijmegen, the Netherlands and Nikhef, Science Park, Amsterdam, the Netherlands
34Joint Institute for Nuclear Research, Dubna, Russia
35Institute for Theoretical and Experimental Physics, Moscow, Russia
36Moscow State University, Moscow, Russia
37Institute for High Energy Physics, Protvino, Russia
38Petersburg Nuclear Physics Institute, St. Petersburg, Russia
39Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
40Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden
41Lancaster University, Lancaster LA1 4YB, United Kingdom
42Imperial College London, London SW7 2AZ, United Kingdom
43The University of Manchester, Manchester M13 9PL, United Kingdom
44University of Arizona, Tucson, Arizona 85721, USA
45University of California Riverside, Riverside, California 92521, USA
46Florida State University, Tallahassee, Florida 32306, USA
47Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
48University of Illinois at Chicago, Chicago, Illinois 60607, USA
We present new direct constraints on a general Wtb interaction using data corresponding to an integrated luminosity of 5.4fb^{-1} collected by the D0 detector at the Tevatron $p\bar{p}$ collider. The standard model provides a purely left-handed vector coupling at the Wtb vertex, while the most general, lowest dimension Lagrangian allows right-handed vector and left- or right-handed tensor couplings as well. We obtain precise limits on these anomalous couplings by comparing the data to the expectations from different assumptions on the Wtb coupling.

PACS numbers: 14.65.Ha, 12.60.Cn

The top quark was discovered in 1995 at the Tevatron $[1,2]$ via the pair production mode involving strong interactions. In 2009, the electroweak production of the top quark was observed by the D0 and CDF collaborations $[3,4]$. At the Tevatron, the dominant production modes for single top quark are the s-channel ("tb") $[5]$ and t-channel ("tqb") $[6,7]$ processes illustrated in Figure 1. Recently, we presented improved measurements of the single top quark production cross sections $[8]$ and the observation of t-channel single top quark production $[8]$.

FIG. 1: Tree level Feynman diagrams for (a) tb and (b) tqb single top quark production.

The large mass of the top quark implies that it has large couplings to the electroweak symmetry breaking sector of the standard model (SM) and may have non-standard interactions with the weak gauge bosons. Single top quark production provides a unique probe to study the interactions of the top quark with the W boson.

The most general, lowest dimension, CP-conserving
Wtb vertex is given by\[10]\:

\[
\mathcal{L} = -\frac{g}{\sqrt{2}} b\gamma^\mu (L_V P_L + R_V P_R) t W^-_\mu - \frac{g}{\sqrt{2}} \frac{\bar{b}\sigma^{\mu\nu} q_v}{M_W} (L_T P_L + R_T P_R) t W^-_\mu + h.c.,
\]

where M_W is the mass of the W boson, q_v is the W boson four-momentum, $P_L = (1 - \gamma_5)/2$ is the left-handed projection operator, $P_R = (1 + \gamma_5)/2$ is the right-handed projection operator, $L_{V,T} = V_{tb} f_{LV,T}$ and $R_{V,T} = V_{tb} f_{RV,T}$. The form factor f_{LV} (f_{LT}) represents the left-handed vector (tensor) coupling, f_{RV} (f_{RT}) represents the right-handed vector (tensor) coupling, and V_{tb} is the Cabibbo-Kobayashi-Maskawa matrix element. In the SM, the Wtb coupling is left-handed with $L_V \equiv |V_{tb}| \approx 1$ and $R_V = L_T = R_T = 0$. The magnitudes of the right-handed vector coupling and the tensor couplings can be indirectly constrained by the measured branching ratio of the $b \rightarrow s\gamma$ process\[11\]. Measurements of top quark decays in $t\bar{t}$ production, e.g., the W boson helicity\[12\], can directly constrain the Lorentz structure of the Wtb vertex\[13\]. Assuming single top quarks are produced only via W boson exchange, the single top quark cross section is directly proportional to the square of the effective Wtb coupling. Moreover, the event kinematics and angular distributions are also sensitive to the existence of anomalous top quark couplings\[14,15\]. Therefore, direct constraints on anomalous couplings can be obtained by measuring single top quark production\[16\].

This analysis uses the same data, event selection, and background modeling as the recent single top quark cross section measurements\[8,9\]. We perform a study of anomalous Wtb couplings and obtain substantial improvements on the limits of these couplings following the general framework given in Ref.\[10\]. Out of the four couplings (L_V, L_T, R_V, R_T), we consider three cases pairing the left-handed vector coupling with each of the other three couplings: (L_V, R_V), (L_V, L_T) and (L_V, R_T), and for each case we assume the other two non-SM couplings are negligible. We assume that single top quarks are produced exclusively through W boson exchange. Therefore other single top quark production mechanisms, such as flavor-changing neutral current interactions\[17\], the decay of new scalar boson\[18\], or the exchange of new vector boson\[19\] are not considered here. We also assume that the Wtb vertex dominates top quark production and decay, i.e., $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$.

We select single top quark events which are expected to contain exactly one isolated large transverse momentum (p_T) electron or muon and large missing transverse energy (E_T). Events with 2, 3 or 4 jets are selected, and one or two of the jets are required to originate from the hadronization of long-lived b hadrons (b-jets) as determined by a multivariate b-tagging algorithm\[20\]. To increase the search sensitivity, we divide our data into six independent analysis channels, each with a different background composition and signal-to-background ratio. The channels are based on the number of identified b jets (1 or 2) and jet multiplicity (2, 3 or 4 jets). The signal selection efficiencies with different Wtb couplings, including branching fraction, trigger efficiencies and the b-tagging requirements, vary between 2.7% and 3.0% for tb and 1.9% and 2.2% for tqb production, estimated using Monte Carlo (MC) simulations.

Single top quark signal events with the SM and anomalous Wtb couplings are modeled using the COMPILE-based effective next-to-leading order (NLO) MC event generator SINGLETOP\[21\] for a top quark mass $m_t = 172.5$ GeV using the CTEQ6M\[22\] parton distribution functions. The anomalous Wtb couplings are taken into account in both production and decay in the generated samples. The event kinematics for both s-channel and t-channel processes reproduce distributions from next-to-leading-order calculations\[23,24\]. The decay of the top quark and the resulting W boson are carried out in the SINGLETOP\[21\] generator in order to preserve information about the spin of the particles. The predicted cross section for SM singletop quark production is given by Ref.\[25\]. The theoretical cross sections for anomalous single top quark production ($s+t\bar{t}$-channel) with $|V_{tb}| \approx 1$ are 3.1 ± 0.3 pb if $f_{LR} = 1$, 9.4 ± 1.4 pb if $f_{LR} = 1$ or $f_{RL} = 1$, and 10.6 ± 0.8 pb if $f_{LR} = f_{LV} = f_{LT} = 1$\[14\], all other couplings are set to zero when calculating these cross sections.

The main background contributions are those from W bosons produced in association with jets ($W+jets$), $t\bar{t}$ production, and multijet production in which a jet with high electromagnetic content mimics an electron, or a muon contained within a jet originating from the decay of a heavy-flavor quark (b or c quark) appears to be isolated. Diboson (WW, WZ, ZZ) and $Z+Jets$ processes add small additional contributions to the background. The $t\bar{t}$, $W+jets$, and $Z+Jets$ events are simulated with the ALPGEN leading-log MC generator\[26\]. The effect of anomalous Wtb couplings on the $t\bar{t}$ background has been found to be negligible, thus only SM $t\bar{t}$ samples are considered in the analysis. Diboson processes are modeled using PYTHIA\[27\]. For all of the signal and background MC samples, PYTHIA is used to simulate parton showers and to model hadronization of all generated partons. The presence of additional $p\bar{p}$ interactions is modeled by events selected from random beam crossings matching the instantaneous luminosity profile in the data. All MC events are processed through a GEANT-based simulation\[28\] of the D0 detector and reconstructed using the same algorithm as data. Differences between simulation and data in lepton and jet reconstruction efficiencies and resolutions, jet energy scale, and b-tagging efficiencies are corrected in the simulation by applying correction functions measured from separate data samples. The $t\bar{t}$, $Z+Jets$ and diboson MC samples are scaled to...
their theoretical cross sections \(29, 30\). We use data containing non-isolated leptons to model the multijet background. \(W+\)jets and multijet backgrounds are normalized by comparing the prediction for background to data before \(b\)-tagging. Details of the selection criteria and background modeling are given in Ref. \(8\).

The main contributions to the systematic uncertainty on the predicted number of events arise from the signal modeling, the jet energy scale (JES), jet energy resolution (JER), corrections to \(b\)-tagging efficiency and the correction for jet-flavor composition in \(W+\)jets events. These uncertainties affect the normalization of the distributions, and in some cases (JES, JER, and \(b\)-tagging) also change the differential distributions. There are smaller contributions due to limited statistics of the MC samples, uncertainties on the measured luminosity, and the trigger modeling. In addition, we also consider a signal cross section uncertainty (3.8% for \(tb\) and 5.3% for \(tbq\)) given by the NLO calculation. Details of systematic uncertainties are given in Ref. \(8\). Table I lists the numbers of events expected and observed for each process as a function of jet multiplicity.

TABLE I: Numbers of expected and observed events in 5.4 \(fb^{-1}\) of integrated luminosity, with uncertainties including both statistical and systematic components. The single top quark contributions are normalized to their theoretical predictions.

<table>
<thead>
<tr>
<th>Source</th>
<th>2 jets</th>
<th>3 jets</th>
<th>4 jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tb) ((f_{LT} = 1))</td>
<td>(730 \pm 38)</td>
<td>(316 \pm 25)</td>
<td>(92 \pm 14)</td>
</tr>
<tr>
<td>(tbq) ((f_{LT} = 1))</td>
<td>(117 \pm 6.2)</td>
<td>(86 \pm 8.6)</td>
<td>(40 \pm 5.8)</td>
</tr>
<tr>
<td>(tb) ((f_{LV} = f_{LT} = 1))</td>
<td>(607 \pm 31)</td>
<td>(284 \pm 21)</td>
<td>(86 \pm 13)</td>
</tr>
<tr>
<td>(tbq) ((f_{LV} = f_{LT} = 1))</td>
<td>(268 \pm 15)</td>
<td>(167 \pm 16)</td>
<td>(67 \pm 10)</td>
</tr>
<tr>
<td>(tb) ((f_{RV} = 1))</td>
<td>(105 \pm 6.0)</td>
<td>(43 \pm 3.8)</td>
<td>(12 \pm 1.9)</td>
</tr>
<tr>
<td>(tbq) ((f_{RV} = 1))</td>
<td>(122 \pm 7.2)</td>
<td>(61 \pm 5.3)</td>
<td>(22 \pm 3.7)</td>
</tr>
<tr>
<td>(tb) ((f_{RB} = 1))</td>
<td>(756 \pm 42)</td>
<td>(344 \pm 27)</td>
<td>(103 \pm 15)</td>
</tr>
<tr>
<td>(tbq) ((f_{RB} = 1))</td>
<td>(103 \pm 5.8)</td>
<td>(67 \pm 6.3)</td>
<td>(28 \pm 4.4)</td>
</tr>
<tr>
<td>(tb) (SM, (f_{LV} = 1))</td>
<td>(104 \pm 16)</td>
<td>(44 \pm 7.8)</td>
<td>(13 \pm 3.5)</td>
</tr>
<tr>
<td>(tbq) (SM, (f_{LV} = 1))</td>
<td>(140 \pm 13)</td>
<td>(72 \pm 9.4)</td>
<td>(26 \pm 6.4)</td>
</tr>
<tr>
<td>(tt)</td>
<td>(433 \pm 87)</td>
<td>(830 \pm 133)</td>
<td>(860 \pm 163)</td>
</tr>
<tr>
<td>(W+)jets</td>
<td>(3,560 \pm 354)</td>
<td>(1,099 \pm 169)</td>
<td>(284 \pm 76)</td>
</tr>
<tr>
<td>(Z+)jets and dibosons</td>
<td>(400 \pm 55)</td>
<td>(142 \pm 41)</td>
<td>(35 \pm 18)</td>
</tr>
<tr>
<td>Multijets</td>
<td>(277 \pm 34)</td>
<td>(130 \pm 17)</td>
<td>(43 \pm 5.2)</td>
</tr>
<tr>
<td>Total SM prediction</td>
<td>(4.914 \pm 558)</td>
<td>(2.317 \pm 377)</td>
<td>(1.261 \pm 272)</td>
</tr>
<tr>
<td>Data</td>
<td>(4.881)</td>
<td>(2.307)</td>
<td>(1.283)</td>
</tr>
</tbody>
</table>

We use a multivariate analysis technique called Bayesian neural networks (BNN) \(31\) to separate the signal from the backgrounds. The BNN discriminant is trained using the lepton and jets four-vectors, a twovector for \(E_T\), and variables that include lepton charge and \(b\)-tagging information. In addition, four angular variables are added based on top quark spin and \(W\) boson helicity information to provide more discriminating power. The total number of variables used in training for events with 2, 3, and 4 jets is 18, 22, and 26, respectively \(8\). Figure 2 shows three example distributions from such variables: the \(p_T\) spectrum of the lepton from the decay of the top quark and the cosine of the angles between the lepton, the leading \(b\)-tagged jet and the reconstructed top quark.

For each of the three scenarios, we consider the anomalous coupling sample as the signal when training BNN discriminants: for \((L_V, R_V)\), the signal is the single top quark sample generated with \(f_{LR} = 1\); for \((L_V, R_T)\), the signal is the sample generated with \(f_{RT} = 1\); for \((L_V, L_T)\), the signal is the sample generated with \(f_{LT} = 1\). The background includes the SM single top quark sample with \(f_{LV} = 1\) and all the backgrounds described above. Each background component is represented in proportion to its expected fraction given by the background model. Figure 4 shows representative BNN discriminant output distributions for the three different scenarios with all six analysis channels combined.

We follow a Bayesian statistical approach \(3, 32, 33\) to compare data to the signal predictions given by different anomalous couplings using BNN discriminant output distributions. We compute a two-dimensional (2D) posterior probability as a function of \(|V_{tb} \cdot f_{LV}|^2\) and \(|V_{tb} \cdot f_{X}|^2\), where \(V_{tb} \cdot f_X\) is any of the three non-SM couplings, in each channel and scenario. In the \((L_V, L_T)\) scenario, the two couplings interfere, and to account for the effect of the interference we use a superposition of three samples as the single top quark contribution: one with the left-handed vector coupling only and \(f_{LV} = 1\) (i.e. the SM coupling sample), one with the left-handed tensor coupling only and \(f_{LT} = 1\), and one with both couplings set to one. The last sample is shown as “\(L_V + L_T\)” in Fig. 5b. We assume a Poisson distribution for data counts and uniform prior probability for nonnegative values of the SM and non-SM couplings. The output discriminants for the signal, backgrounds, and data are used to form a binned likelihood as a product over all six analysis channels and all bins, taking into account all systematic uncertainties and their correlations. The expected posterior probabilities are obtained by setting the number of data counts to be equal to the predicted sum of the signal and backgrounds.

Figure 4 shows the 2D posterior probability density distributions for the three scenarios. We do not observe significant deviations from the SM expectations and therefore compute 95\% C.L. upper limits on the anomalous couplings by integrating out the left-handed vector coupling to get a one-dimensional posterior probability density. The measured values are given in Table II. With the SM constraint on the left-handed tensor coupling, i.e. \(|V_{tb} \cdot f_{LV}|^2 = 1\), the 95\% C.L. limits on left-handed tensor, right-handed vector and tensor couplings are \(|V_{tb} \cdot f_{RV}|^2 < 0.11\), \(|V_{tb} \cdot f_{RT}|^2 < 0.50\) and \(|V_{tb} \cdot f_{RB}|^2 < 0.05\), respectively.

In summary, we have presented a search for anomalous Wtb couplings using 5.4 \(fb^{-1}\) of D0 data in the single top quark final state. We find no evidence for anomalous couplings and set 95\% C.L. limits on these couplings.
These represent improvements in the limits by factors of 2.6 to 5.0 in terms of couplings squared compared to the previous results.16 While a factor of approximately 2.5 is expected from the increase in integrated luminosity. This result represents the most stringent direct constraints on anomalous Wtb interactions.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

\begin{table}[h]
\centering
\begin{tabular}{lll}
\hline
Scenario & Cross section & Coupling \\
\hline
(L_V, L_T) & < 1.21 pb & $|V_{tb} \cdot f_{LT}|^2 < 0.13$

(L_V, R_V) & < 2.81 pb & $|V_{tb} \cdot f_{RV}|^2 < 0.93$

(L_V, R_T) & < 0.60 pb & $|V_{tb} \cdot f_{RT}|^2 < 0.06$
\hline
\end{tabular}
\caption{One-dimensional upper limits at 95\% C.L. for anomalous Wtb couplings in the three scenarios.}
\end{table}

\bibliography{references}

\begin{thebibliography}{9}
\bibitem{8} V. M. Abazov \textit{et al.} (D0 Collaboration), \texttt{arXiv:1108.3091}
\end{thebibliography}
FIG. 4: Two-dimensional posterior probability density distributions for the anomalous couplings. The left row (a) shows the distribution for the (L_L, L_R) scenario, the middle row (b) for the (L_R, R_L) scenario, and the right row (c) for the (L_L, R_T) scenario. The dots represent the peak posterior from our data in comparison with the SM predictions.

[24] N. Kidonakis, Phys. Rev. D 74, 114012 (2006). The cross sections for the single top quark processes ($m_t = 172.5$ GeV) are 1.04 ± 0.04 pb (s-channel) and 2.26 ± 0.12 pb (t-channel).

