The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/93985

Please be advised that this information was generated on 2019-10-26 and may be subject to change.
Observation of a New χ_b State in Radiative Transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$ at ATLAS

The ATLAS Collaboration

(Dated: December 21, 2011)

The χ_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at $\sqrt{s} = 7$ TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb$^{-1}$, these states are reconstructed through their radiative decays to $\Upsilon(1S, 2S)$ with $\Upsilon \to \mu^+\mu^-$. In addition to the mass peaks corresponding to the decay modes $\chi_b(1P, 2P) \to \Upsilon(1S)\gamma$, a new structure centered at a mass of 10.530\pm0.005 (stat.$) \pm$0.009 (syst.) GeV is also observed, in both the $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ decay modes. This structure is interpreted as the $\chi_b(3P)$ system.

PACS numbers: 12.38.-t, 13.20.Gd, 14.40.Pq, 14.65.Fy

Measurements of the properties of heavy quark-antiquark bound states, or quarkonia, provide a unique insight into the nature of Quantum Chromodynamics close to the strong decay threshold. For the $b\bar{b}$ system, the quarkonium states with parallel quark spins ($s = 1$) include the S-wave Υ and the P-wave χ_b states, where the latter each comprise a closely spaced triplet of $J = 0, 1, 2$ spin states: χ_{b0}, χ_{b1} and χ_{b2}. The $\chi_b(1P)$ and $\chi_b(2P)$, with spin-weighted mass barycenters of 9.90 and 10.26 GeV, respectively, can be readily produced in the radiative decays of $\Upsilon(2S)$ and $\Upsilon(3S)$ and have been studied experimentally [1].

In this letter, χ_b quarkonium states are reconstructed with the ATLAS detector through the radiative decay modes $\chi_b(nP) \to \Upsilon(1S)\gamma$ and $\chi_b(nP) \to \Upsilon(2S)\gamma$, in which $\Upsilon(1S, 2S) \to \mu^+\mu^-$ and the photon is reconstructed either through conversion to e^+e^- or by direct calorimetric measurement. Previous experiments have measured the $\chi_b(1P)$ and $\chi_b(2P)$ through these decay modes [2]. The $\chi_b(3P)$ state has not previously been observed. It is predicted to have an average mass of approximately 10.52 GeV, with hyperfine mass splitting between the triplet states of 10–20 MeV [2,4].

The ATLAS detector [2] is a general-purpose particle physics detector with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker (TRT). The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field and by high-granularity liquid-argon sampling electromagnetic (EM) calorimeters. An iron-scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The endcap and forward regions are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. The muon spectrometer (MS) surrounds the calorimeters and consists of a system of precision tracking chambers and detectors for triggering, inside a toroidal magnetic field.

The data sample used for this measurement was recorded by the ATLAS experiment during the 2011 LHC proton-proton collision run at a center-of-mass energy $\sqrt{s} = 7$ TeV. The integrated luminosity of the data sample, which includes only data-taking periods where all relevant detector sub-systems were operational, is 4.4 fb$^{-1}$. A set of muon triggers designed to select events containing muon pairs or single high transverse momentum muons was used to collect the data sample.

In this analysis each muon candidate must satisfy standard muon quality requirements [6]. It must have a track, reconstructed in the MS, combined with a track reconstructed in the ID with transverse momentum $p_T > 4$ GeV and pseudorapidity $|\eta| < 2.3$. The di-muon selection requires a pair of oppositely charged muons, which are fitted to a common vertex. A very loose vertex quality requirement (χ^2 per degree of freedom [d.o.f.] < 20) is used and no mass or momentum constraints are applied to the fit. The di-muon candidate is also required to have $p_T > 12$ GeV and $|\eta| < 2.0$. The invariant mass distribution, $m_{\mu\mu}$, of di-muon candidates is shown in Fig. [1] Those candidates with masses in the ranges $9.25 < m_{\mu\mu} < 9.65$ GeV and $9.80 < m_{\mu\mu} < 10.10$ GeV are selected as $\Upsilon(1S) \to \mu^+\mu^-$ and $\Upsilon(2S) \to \mu^+\mu^-$ candidates respectively. The asymmetric mass window (evident from Fig. [1]) for $\Upsilon(2S)$ candidates is chosen in order to reduce contamination from the $\Upsilon(3S)$ peak and continuum background contributions.

The reconstruction of photons in ATLAS is described in Ref. [7]. Further details related to this particular analysis are described below.

Converted photons are reconstructed from two oppositely charged ID tracks intersecting at a conversion vertex, with the opening angle between the two tracks at this vertex constrained to be zero. For tracks with signals in the TRT, the transition radiation should be consistent with an electron hypothesis. In order to be reliably reconstructed, each conversion electron track must have a minimum transverse momentum of 500 MeV. It is also required to have at least four silicon detector hits and not to be associated to either of the two muon candidates. To
reduce background contamination, the conversion candidate vertex is required to be at least 40 mm from the beam axis and have a vertex \(\chi^2 \) probability of greater than 0.01. The converted photon impact parameter with respect to the di-muon vertex is required to be less than 2 mm.

Electromagnetic calorimeter energy deposits not matched to any track are classified as unconverted photons. This analysis uses the “loose” photon selection described in Ref. [1], with a minimum photon transverse energy of 2.5 GeV. The loose photon selection includes a limit on the fraction of the energy deposit in the hadronic calorimeter as well as a requirement that the transverse width of the shower be consistent with the narrow shape expected for an EM shower.

To check that an unconverted photon originates from the same vertex as the \(\Upsilon \), and to improve the mass resolution of the reconstructed \(\chi_b \), the polar angle of the photon is corrected using the procedure described in Ref. [3]. The corrected polar angle is determined using the measurement of the photon direction from the longitudinal segmentation of the calorimeter and the constraint from the di-muon vertex position. Photons incompatible with having originated from the di-muon vertex are rejected by means of a loose cut on the fit result (\(\chi^2 \) per d.o.f. < 200).

The converted (unconverted) photon candidates are required to be within \(|\eta| < 2.30 \) (2.37). Unconverted photons must also be outside the transition region between the barrel and the endcap calorimeters, 1.37 < \(|\eta| < 1.52 \).

The \(\chi_b \) candidates are formed by associating a reconstructed \(\Upsilon \rightarrow \mu^+\mu^- \) candidate with a reconstructed photon. The invariant mass difference \(\Delta m = m(\mu^+\mu^-) - m(\mu^+\mu^-) \) is calculated to minimize the effect of \(\Upsilon \rightarrow \mu^+\mu^- \) mass resolution. In order to compare the \(\Delta m \) distributions of both \(\chi_b(nP) \rightarrow \Upsilon(1S)\gamma \) and \(\chi_b(nP) \rightarrow \Upsilon(2S)\gamma \) decays, the variable \(m_b = \Delta m + m_{\Upsilon(1S)} \) is defined, where \(m_{\Upsilon(1S)} \) are the world average masses of the \(\Upsilon(kS) \) states. Requirements of \(p_T(\mu^+\mu^-) > 20 \) GeV and \(p_T(\mu^+\mu^-) > 12 \) GeV are applied to \(\Upsilon \) candidates with unconverted and converted photon candidates respectively. These thresholds are chosen in order to optimize signal significance in the \(\chi_b(1P,2P) \) peaks.

Figure 2(a) shows the \(m_1 \) distribution for unconverted photons and Fig. 2(b) the \(m_1 \) and \(m_2 \) distributions for converted photons. In addition to the expected peaks for \(\chi_b(1P,2P) \rightarrow \Upsilon(1S,2S)\gamma \), structures are observed at an invariant mass of approximately 10.5 GeV. These additional structures are interpreted as the radiative decays of the previously unobserved \(\chi_b(3P) \) states, \(\chi_b(3P) \rightarrow \Upsilon(1S)\gamma \) and \(\chi_b(3P) \rightarrow \Upsilon(2S)\gamma \).

Separate fits are performed to the \(m_1 \) distributions of the selected \(\mu^+\mu^-\gamma \) candidates reconstructed from converted and unconverted photons to extract mass information from the observed \(\chi_b(3P) \) signals. The higher threshold for unconverted photons (2.5 GeV, versus 1 GeV for converted photons) prevents the reconstruction of the soft photons from \(\chi_b(2P,3P) \) decays into \(\Upsilon(2S) \).

An unbinned extended maximum likelihood fit is performed to the \(m_1 = \Delta m + m_{\Upsilon(1S)} \) distribution of the selected unconverted \(\mu^+\mu^-\gamma \) candidates. The three peaks in the distribution are each modeled by a Gaussian probability density function (pdf) with independent normalization parameter, \(N_n \), mean value, \(\overline{m}_n \), and width parameter, \(\sigma_n \). The background distribution is parameterized by the pdf \(N_B \cdot \exp(A \cdot \Delta m + B \cdot \Delta m^2) \) where \(N_B \), \(A \), and \(B \) are all free parameters. The three mean values \(\overline{m}_{n=1,2,3} \) determined by the fit are shown in Table 1. The mean value \(\overline{m}_3 \) is an estimate of the mass barycenter of the observed \(\chi_b(3P) \) signal.

Likewise, the \(m_1 = \Delta m + m_{\Upsilon(1S)} \) and \(m_2 = \Delta m + m_{\Upsilon(2S)} \) distributions for the sample of \(\mu^+\mu^-\gamma \) candidates reconstructed from converted photons are fitted using an unbinned extended maximum likelihood method. A simultaneous fit is performed on the \(m_1 \) and \(m_2 \) distributions for the \(\chi_b(nP) \rightarrow \Upsilon(1S)\gamma \) (for \(n = 1,2,3 \)) and \(\chi_b(nP) \rightarrow \Upsilon(2S)\gamma \) (for \(n = 2,3 \) only) signals, with the distributions modeled by three signal components (two of which are shared between the \(\Upsilon(1S) \) and \(\Upsilon(2S) \) distributions) and two background distributions.

In the \(\Delta m \) distribution for the converted photon candidates the typical mass resolution is found to be in the range \(16 - 20 \) MeV, of similar magnitude to the hyperfine splittings, motivating the need for multiple signal components for each of the \(\chi_b(nP) \) peaks. For \(n = 1,2 \), the radiative branching fractions of the \(J = 0 \) states are suppressed with respect to the \(J = 1,2 \) states [4] and therefore a \(J = 0 \) component is not included in the fit. Similar behavior is assumed for the \(n = 3 \) case. Each of the three peaks \((n = 1,2,3) \) is therefore parameterized by a dou-
The mass barycenter for the \(\gamma \) mass barycenter from modeling of the background distributions are added in quadrature to provide an estimate of the systematic uncertainty on the \(\gamma \) mass barycenter for the two doublets. The measured mass barycenters of the \(\chi_b \) states are obtained if the common value of the relative normalization is allowed to be determined freely by the fit to the three doublets. Background modeling variations, decoupled fits to the \(\bar{m}_1 \) and \(\bar{m}_2 \) distributions, and individually released constraints on the mass position of the \(n = 1,2 \) doublets each result in deviations of the order of \(\pm 5 \) MeV or smaller. Furthermore, if the constraints on the masses of the \(n = 1,2 \) peaks are released, the values obtained from the fit are consistent with expectations, within statistical errors and uncertainty in the relative contributions from \(n = 1,2 \) states. The effect of symmetrizing the \(\Upsilon(2S) \) mass window is studied and found to have negligible effect on the fitted \(\chi_b \) masses while increasing background contamination. The resulting shifts in \(\bar{m}_3 \) for these independent variations are added in quadrature to provide an estimate of the systematic uncertainty.

The \(\chi_b(3P) \) signal significance is assessed from \(\log(L_{\text{max}}/L_0) \), where \(L_{\text{max}} \) and \(L_0 \) are the likelihood values from the nominal fit and from a fit with no \(\chi_b(3P) \) signal included, respectively. The fit is repeated with each of the systematic variations in the model, as discussed above, and the likelihood ratio re-evaluated. The significance of the \(\chi_b(3P) \) signal is found to be in excess of six standard deviations in each of the unconverted and converted photon selections independently.

The mass barycenter for the \(\chi_b(3P) \) signal, determined from the fit using unconverted photon candidates is:

\[
\bar{m}_3 = 10.541 \pm 0.011 \text{ (stat.)} \pm 0.030 \text{ (syst.) \, GeV.}
\]

The mass barycenter for the \(\chi_b(3P) \) signal, determined from the fit using converted photon candidates is:

\[
\bar{m}_3 = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.) \, GeV.}
\]

The measured mass barycenters of the \(\chi_b(1P) \), \(\chi_b(2P) \) and \(\chi_b(3P) \) systems are summarized in Table I. The results of the converted and unconverted photon analyses for the \(\chi_b(3P) \) are found to be compatible. Given the substantially smaller systematic uncertainties in the conversion measurement, the final mass determination for \(\bar{m}_3 \) is quoted solely on the basis of this analysis.

In conclusion, the production of the heavy quarkonium states \(\chi_b(nP) \) in proton-proton collisions at \(\sqrt{s} = 7 \text{ TeV} \) is quoted solely on the basis of this analysis.
is observed through reconstruction of the radiative decay modes of $\chi_b(nP) \rightarrow \Upsilon(1S,2S)\gamma$. Mass peaks corresponding to $\chi_b(1P,2P)$ decays are observed, together with additional structures at higher mass, which are consistent with theoretical predictions for $\chi_b(3P) \rightarrow \Upsilon(1S)\gamma$ and $\chi_b(3P) \rightarrow \Upsilon(2S)\gamma$. These observations are interpreted as the $\chi_b(3P)$ multiplet, the mass barycenter of which is measured to be 10.530 ± 0.005 (stat.) ± 0.009 (syst.) GeV.

ACKNOWLEDGEMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MINEr, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MÉRIES (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MPA, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Physics Department, National Technical University of Athens, Zografou, Greece

Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain

(a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

Department for Physics and Technology, University of Bergen, Bergen, Norway

Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America

Department of Physics, Humboldt University, Berlin, Germany

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

(a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey

(a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy

Physikalisches Institut, University of Bonn, Bonn, Germany

Department of Physics, Boston University, Boston MA, United States of America

Department of Physics, Brandeis University, Waltham MA, United States of America

(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, Carleton University, Ottawa ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

(a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

(a) II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

(b) Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

(a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst MA, United States of America

Department of Physics, McGill University, Montreal QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America

(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America

Group of Particle Physics, University of Montreal, Montreal QC, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan
100 Graduate School of Science, Nagoya University, Nagoya, Japan
101 (a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
102 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
103 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
104 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
106 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107 Department of Physics, New York University, New York NY, United States of America
108 Ohio State University, Columbus OH, United States of America
109 Faculty of Science, Okayama University, Okayama, Japan
110 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
111 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
112 Palacký University, RCPTM, Olomouc, Czech Republic
113 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
114 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
115 Graduate School of Science, Osaka University, Osaka, Japan
116 Department of Physics, University of Oslo, Oslo, Norway
117 Department of Physics, Oxford University, Oxford, United Kingdom
118 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
119 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
120 Petersburg Nuclear Physics Institute, Gatchina, Russia
121 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
123 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
125 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
126 Czech Technical University in Prague, Praha, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina SK, Canada
130 Ritsumeikan University, Kusatsu, Shiga, Japan
131 (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
132 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
133 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
134 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco
135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
137 Department of Physics, University of Washington, Seattle WA, United States of America
138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139 Department of Physics, Shinshu University, Nagano, Japan
140 Fachbereich Physik, Universität Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby BC, Canada
142 SLAC National Accelerator Laboratory, Stanford CA, United States of America
143 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
145 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at California Institute of Technology, Pasadena CA, United States of America
Also at Institute of Physics, Jagiellonian University,Krakow, Poland
Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
* Deceased