
ar
X

iv
:1

10
6.

30
42

v1
  [

co
nd

-m
at

.m
es

-h
al

l] 
 1

5 
Ju

n 
20

11

Chiral tunneling in single and bilayer graphene

T. Tudorovskiy, K. J. A. Reijnders, M. I. Katsnelson

Radboud University Nijmegen, Institute for Molecules and Materials,

Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

E-mail: m.katsnelson@science.ru.nl

http://arxiv.org/abs/1106.3042v1


Chiral tunneling in single and bilayer graphene 2

Abstract. We review chiral (Klein) tunneling in single-layer and bilayer graphene

and present its semiclassical theory, including the Berry phase and the Maslov index.

Peculiarities of the chiral tunneling are naturally explained in terms of classical

phase space. In a one-dimensional geometry we reduced the original Dirac equation,

describing the dynamics of charge carriers in the single layer graphene, to an effective

Schrödinger equation with a complex potential. This allowed us to study tunneling

in details and obtain analytic formulas. Our predictions are compared with numerical

results. We have also demonstrated that, for the case of asymmetric n-p-n junction

in single layer graphene, there is total transmission for normal incidence only, side

resonances are suppressed.

1. Introduction

Since this paper is prepared for the proceedings of the Nobel symposium on graphene we

do not start with general explanations what graphene is and why it is important, it will

be very well described in other presentations. We just refer to reviews [1, 2, 3, 4, 5, 6, 7].

Our particular subject is chiral, or Klein (as it was called in [8]) tunneling. This is one

of the key phenomena determining peculiar electronic properties of graphene. In light of

possible applications, the Klein tunneling protects high charge carrier mobility despite

unavoidable inhomogeneities. At the same time, due to the Klein tunneling graphene

electronics cannot copy the standard semiconductor one: if you make graphene transistor

based on n-p-n junction just like for silicon, it will not be efficient since you will not be

able to lock it. These two remarks illustrate the importance of the subject, the more

detailed discussion is presented below.

The paper consists of two pieces. The first one (Sections 2 – 5) preserves the

historical line of thoughts and presents the motivation of the problem, from [9] to [8].

In the second part (Sections 6 – 12) we present a systematic semiclassical theory of the

chiral tunneling, together with numerical results.

2. The Klein paradox

Soon after the discovery of the Dirac equation, O. Klein [9] noticed one of its strange

properties which was afterwards called the “Klein paradox”. Klein considered the

original four by four Dirac equation, which governs the dynamics of a spin one half

particle moving in three-dimensional space. To make a direct connection to the case of

graphene without changing the essence of the paradox, we will consider a two by two

matrix equation for a particle propagating in two-dimensional space:

ĤΨ = EΨ , (1)

where Ψ = (ψ1, ψ2) and the Hamiltonian

Ĥ = cσp̂+ u(x, y) +mc2σ̂z . (2)

Here m is the mass of the particle, c is the speed of light and u(x, y) is the potential

energy.
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To demonstrate the essence of the paradox we consider normal incidence on a

one-dimensional potential barrier, which means that u = u(x) and ψi = ψi(x). Then

equation (1) takes the form





−ih̄cdψ2

dx
=
(
E −mc2 − u(x)

)
ψ1 ,

−ih̄cdψ1

dx
=
(
E +mc2 − u(x)

)
ψ2 .

(3)

To make the problem exactly solvable we use a step-wise potential

u(x) =

{
0, x < 0,

u0, x > 0,
(4)

where u0 is a positive constant. We consider a general scattering problem with an

incoming wave Ψin(x) and a reflected wave Ψr(x) for x < 0,

Ψ(x) = Ψin(x) + rΨr(x) , (5)

and a transmitted wave Ψt(x) for x > 0,

Ψ(x) = tΨt(x) . (6)

The x-dependence of the solutions for x < 0 can be written as exp(±ikx), where
the wave vector k satisfies the relativistic dispersion relation E2 = h̄2c2k2+m2c4 as can

be found by diagonalizing equation (3) with u = 0. Alternatively the wave vector can

be written as

k =

√
E2 −m2c4

h̄c
. (7)

One easily sees that there are three distinct regimes, two of which are classically allowed,

namely E > mc2 corresponding to electron states and E < −mc2 corresponding to hole

or positron states. There is also a classically forbidden region −mc2 < E < mc2 where

the wave vector k is imaginary and we have evanescent waves. In what follows we will

assume that we are in the electron regime. By calculating eigenvectors of equation (3)

one obtains for the wavefunctions to the left of the barrier

Ψin(x) =

(
1

α

)
eikx (8)

and

Ψr(x) =

(
1

−α

)
e−ikx , (9)

where

α =

√
E −mc2

E +mc2
. (10)

To the right of the barrier we have a new wave vector q, which satisfies the

relativistic dispersion relation (E − u0)
2 = h̄2c2q2 +m2c4, or

q =

√
(u0 −E)2 −m2c4

h̄c
. (11)
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Consider a jump

u0 > E +mc2 , (12)

since in this case the paradox arises. The wave vector q is real and we have a propagating

wave on the right side of the barrier. Note however that this particle belongs to

the hole continuum rather than to the electron one. For smaller values of u0, there

are either propagating electrons on both the left and the right side of the barrier,

when u0 < E − mc2, or evanescent waves on the right side of the barrier, when

E − mc2 < u0 < E + mc2. Solving the Dirac equation (3) on the right side of the

barrier, one obtains for the transmitted wave

Ψt(x) =

(
1

−1/β

)
eiqx , (13)

where

β =

√
u0 −E −mc2

u0 − E +mc2
. (14)

From the continuity of the wavefunction at x = 0,

Ψin + rΨr|x=−0 = Ψt|x=+0 , (15)

we find

r =
αβ + 1

αβ − 1
. (16)

For the considered case we have 0 < α, β < 1, so that r < 0 and

R = |r|2 =
(
1 + αβ

1− αβ

)2

> 1 . (17)

To treat reflection and transmission coefficients properly one has to look at the

probability current density for the one-dimensional Dirac equation

jx = cΨ†σxΨ = c(ψ∗
1ψ2 + ψ∗

2ψ1) , (18)

which is a conserved quantity. When we look at the current density (18) we see that it

takes values 2αc for the incoming wave and −2αcR for the reflected wave. Therefore R is

nothing but the reflection coefficient and we come to the conclusion that the amplitude

of the reflected wave is larger than the amplitude of the incident one. This strange effect

that occurs when condition (12) is fulfilled was initially called the Klein paradox. In our

further discussion we will follow [10] and [11]. For a rather complete list of references

see [12].

First of all note that the current density (18) on the right hand side equals −2|t|2/β,
indicating that there is something wrong with the definition of the transmitted wave.

What exactly is wrong was pointed out by Pauli, who noticed that the group velocity

for the case of equation (12),

vg =
1

h̄

dE

dq
=

1

h̄

(
dq

dE

)−1

=
h̄c2q

E − u0
, (19)
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is opposite to the direction of the wave vector q. Since the group velocity determines

the direction of propagation, the transmitted wave (13) corresponds (for positive q) to

a particle moving to the left instead of to the right. Therefore we should define our

outgoing wave as

Ψt(x) =

(
1

1/β

)
e−iqx , (20)

which gives the currenty density 2|t|2/β. When we once again calculate r from

equation (15), it is seen that

R = |r|2 =
(
1− αβ

1 + αβ

)2

< 1 . (21)

which is always smaller than one. Therefore the formal paradox disappears, see also [13].

The paradox reappears when we consider the problem from a different angle.

Instead of an infinitely broad barrier we will consider a finite barrier,

u(x) =

{
u0, |x| < a

0, |x| > a
(22)

The problem with the choice of the transmitted wave on the right side of the barrier has

now disappeared, since it is simply tΨin. Within the barrier one now has to consider both

modes exp(±iqx), representing the most general solution. Reflection and transmission

coefficients are then obtained from the continuity of the wave function at x = −a and

x = a, which gives after straightforward calculations (see e.g. [10] and [14])

R =
(1− α2β2)2 sin2(2qa)

4α2β2 + (1− α2β2)2 sin2(2qa)
, (23)

T =
4α2β2

4α2β2 + (1− α2β2)2 sin2(2qa)
. (24)

There is no paradox in these expressions, since 0 < R < 1, 0 < T < 1 and R+ T = 1 as

it should be. Note that we have total transmission through the barrier when

qa =
Nπ

2
, (25)

with integer N .

We can consider an infinitely broad barrier by letting a go to infinity in the above

expressions. As a becomes very large while other parameters remain fixed the sine

will oscillate very rapidly. We can then average over the fast oscillations and replace

sin2(2qa) by its average value 1
2
to obtain the expressions

R∞ =
(1− α2β2)2

8α2β2 + (1− α2β2)2
(26)

T∞ =
8α2β2

8α2β2 + (1− α2β2)2
(27)

One may be surprised that the results (21) and (26) do not coincide. It is however well

known from electromagnetic wave theory [15] that the reflection coefficients for the two

situations should differ.
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From the last result we see once again that the paradox has disappeared in its

mathematical form, but has reappeared as physically counterintuitive behaviour. In

non-relativistic quantum mechanics a particle can tunnel through a classically forbidden

region E < u(x), but the probability is exponentially small when the barrier is high and

broad. In the semiclassical approximation the transmission through the barrier with

turning points x1,2, which satisfy E = u(x1,2), is given by

T = exp
(
−2

h̄

∫ x2

x1

dx
√
2m(u(x)−E)

)
, (28)

where m is the mass of the particle. For a relativistic particle incident on a sufficiently

high barrier (12) the situation is dramatically different. In the limit a → ∞ the

probability of penetration (27) is in general not small at all. Even for an infinitely

high barrier (u0 → ∞) one has β = 1 and

T∞ =
E2 −m2c4

E2 − 1
2
m2c4

. (29)

This is of the order of one when E−mc2 is of the order of mc2, while it is approximately

equal to one in the ultrarelativistic limit

E ≫ mc2 . (30)

This is the contemporary formulation of the Klein paradox [10]; quantum relativistic

particles can tunnel with large enough probabilities through barriers of arbitrarily large

height and width.

The tunneling effect can be hand-wavingly explained with the help of the Heisenberg

uncertainty principle. Since one cannot know both momentum and position with

an arbitrary accuracy at a given instant, one cannot separate the total energy into

a potential and a kinetic part. So the kinetic energy can be “a bit” negative. In

the relativistic regime the restriction is much stronger [16]: one cannot even know

the coordinate with an accuracy higher than h̄c/E. Therefore relativistic quantum

mechanics cannot be mechanics, but can only be field theory [17]. This theory will

always contain particles and antiparticles and to measure the coordinate better than

h̄c/E one needs to apply such a high energy that particle-antiparticle pairs will be

created. The original particle whose coordinate one wanted to measure will then be

lost among the newly-born particles. A full field theoretic treatment of the problem

was given in Ref. [18]. The most important point is that although the problem of a

high enough barrier looks like a static problem, this is actually not the case. One needs

to study carefully how the state is reached and this involves positron emission by the

growing barrier. For a more detailed discussion of the role of electron-positron pairs in

the Klein paradox, see [19].
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3. Klein tunneling in single layer graphene

The Hamiltonian for charge carriers in graphene near conical points K and K ′ is given

by the massless Dirac Hamiltonian

Ĥ = V (σxp̂x + σyp̂y) + u(x, y) , (31)

where V is the Fermi velocity V ≈ c/300. To consider normal incidence on the one-

dimensional potential barrier (22) in this case, we can simply put m = 0 in our previous

results. From equations (10) and (14) it is seen that α = β = 1. Therefore we have

T = 1 and R = 0 in equations (26) and (27), regardless of the height of the potential.

This result is not related to the specific shape of the potential [20].

This property has an analog in two and three dimensions with u = u(x, y) or

u = u(x, y, z), namely that backscattering is forbidden. This was found long ago

for scattering of ultrarelativistic particles in three dimensions (see [21, 17]). An

important consequence of this property for carbon materials was noticed in [20].

Absence of backscattering explains the existence of conducting channels in metallic

carbon nanotubes, while in a non-relativistic one-dimensional system an arbitrarily small

disorder leads to localization [22].

The consideration in [20] is very instructive since it explicitly shows the role of

the Berry phase and time-reversal symmetry, but it is also quite cumbersome. Here

we present a somewhat simplified scheme of this proof. To this aim we consider the

equation for the T -matrix (see e.g. [23])

T̂ = û+ ûĜ0T̂ , (32)

where û is the operator corresponding to the scattering potential,

Ĝ0 = lim
δ→+0

1

E − Ĥ0 + iδ
, (33)

is the Green’s function of the unperturbed Hamiltonian Ĥ0 and E is the electron energy,

which is assumed to be larger than zero. If Ĥ0 is the Dirac Hamiltonian for massless

Dirac fermions (31), we have

Ĝ0(r, r
′) =

∫ dq

(2π)2
Ĝ0(q) exp[iq(r − r′)] , (34)

where

Ĝ0(q) =
1

E − h̄V qσ + iδ
=

1

h̄V

ε+ qσ

(ε+ iδ)2 − q2
, (35)

with ε = E/h̄V . The probability of backscattering can be found by iterating

equation (32) and is proportional to

T (−k,k) =
〈
−k

∣∣∣u+ uĜ0u+ uĜ0uĜ0u+ . . .
∣∣∣k
〉
≡ T (1)+T (2)+ . . . , (36)

where T (n) is the contribution proportional to un.
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We can always choose axes such that k ‖ Ox. In this case |k〉 and |−k〉 have spinor

structures

(
1

1

)
and

(
1

−1

)
respectively. Therefore, if T̂ is the two by two matrix

T̂ = T0 + Tσ , (37)

one has

T (−k,k) ∼ Tz(−k,k) + iTy(−k,k) (38)

Now keeping in mind that V is proportional to the identity matrix one can prove term

by term that all contributions to Ty(−k,k) and Tz(−k,k) vanish by symmetry. Actually

this is because T̂(k) ∼ k ‖ Ox; from the vectors k and−k one cannot construct anything

with nonzero y or z components. Strictly speaking this argument is only enough for an

isotropic potential; for a generic case one has to do a term by term analysis based on

expansion (36), see Ref. [20]. For two nonparallel vectors k1 and k2 one can construct

a matrix with nonzero y or z components, since one of the vectors has a nonzero y

component, so that k1 × k2 ‖ Oz.
When one thinks about electrons in quantum electrodynamics, it is not easy to

create potential jumps larger than 2mc2 ≈ 1 MeV. Similar phenomena take place in

electric or gravitational fields ([24, 25]; see [12] for a detailed list of references), but

the context is always quite exotic, such as collisions of ultraheavy ions or even black

hole evaporation. There were no experimental data available which would require the

Klein paradox for their explanation. However shortly after the discovery of graphene

it was realized that Klein tunneling is one of the crucial phenomena for graphene

physics and electronics [8]. Soon after this theoretial prediction the effect was confirmed

experimentally [26, 27].

Considering possible applications, Klein tunneling in graphene is rather bad news. If

one copied the construction from a silicon transistor to graphene, it would be impossible

to lock the transistor. One would need to open a gap in the spectrum to be able to lock

it. At the same time it is good news as well: due to the Klein paradox inhomogeneities in

the electron density do not lead to localization and their effect on the electron mobility

is not very essential [8].

4. Tunneling trough a stepwise barrier

Let us now consider a massless Dirac fermion incident on the potential barrier (22) with

positive energy under an angle φ, as it was done first in [8]. Of course, the potential

cannot be sharp on the atomic scale, since this would induce Umklapp scattering

between different valleys. Therefore by a step-wise potential we mean that the electron

wavelength k−1 is much larger than the typical spatial scale of the potential l, which is

in turn much larger than the size of the unit cell.

Within this assumption the solution is each region is given by traveling waves
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proportional to exp(±ikxx) exp(±ikyy), where kx and ky satisfy the dispersion relation
(
E − u0
h̄V

)2

≡ k2 = (k2x + k2y) , (39)

as can be found from equation (31). Similarly to the original Dirac equation we can

distinguish three distinct regimes from this equation. For u0 < E − h̄V |ky| we have

electrons and for u0 > E + h̄V |ky| we have holes, while the region E − h̄V |ky| < u0 <

E + h̄V |ky| is classically forbidden. As was done for the case of the massive Dirac

equation, we will now require that the potential u0 in equation (22) satisfies

u0 > E + h̄V |ky| , (40)

so that we have hole states within the barrier.

Let us denote by k the wave vector for |x| > a and by q the wave vector for |x| < a.

At the potential jump the momentum in the y direction should be conserved, so that

the new angle θ is related to the new wave vector q by

k sin φ = ky = qy = q sin θ . (41)

From equation (31) we see that the second component of the wavefunction is related to

the first by

ψ2 = sgn(E − u0)e
iφψ1 , (42)

so the solutions in the three regions are given by

Ψ(x, y) =






(
1

seiφ

)
eikxxeikyy + r

(
1

−se−iφ

)
e−ikxxeikyy, x < −a

A

(
1

s′eiθ

)
eiqxxeikyy +B

(
1

−s′e−iθ

)
e−iqxxeikyy, −a < x < a

t

(
1

seiφ

)
eikxxeikyy, x > a

(43)

where we have introduced s = sgn(E), s′ = sgn(E − u0), kx = k cos φ and qx = q cos θ.

Note that the reflected particle moves under the angle π − φ, assuming that the angle

changes from −π/2 to 3π/2, so that we have the phase − exp(−iφ) for the reflected

wave. We can now determine the reflection coefficient r, the transmission coefficient t

and the coefficients A and B as before, from the requirement that the wavefunction is

continuous at x = ±a.
Finally the result is given by

r = 2eiφ−2ikxa sin(2qxa)
sin φ− ss′ sin θ

ss′ [e−2iqxa cos(φ+ θ) + e2iqxa cos(φ− θ)]− 2i sin(2qxa)
. (44)

For the case under consideration we have ss′ = −1, since the signs of E and E − u0 are

opposite. The transmission probability can now easily be calculated as

T = |t|2 = 1− |r|2 . (45)

From equation (44) we immediately see that the reflection is zero for normal incidence, as

we proved for a more general potential in the previous section. There are also additional
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angles, called “magic angles”, at which the reflection coefficient is zero and we have full

transmission. They are given by the condition

qxa = N
π

2
, (46)

where N is an integer.

We can compare the behaviour of electrons in single layer graphene with the

behaviour of normal electrons. When the potential barrier contains no electronic states,

the transmission decays exponentially with increasing barrier width and height, [28], so

that the barrier would reflect electrons completely. But since single layer graphene is

gapless, it seems more appropriate to compare it to a gapless semiconductor with non-

chiral charge carriers, a situation which can be realized in certain heterostructures [29,

30]. For this case we find

t =
4kxqx exp(2iqxa)

(q + kx)2 exp(−2iqxa)− (qx − kx)2 exp(2iqxa)
, (47)

where kx and qx are the x-components of the wave vector outside and inside the barrier,

respectively. As in the case of single layer graphene there are resonance conditions at

which the barrier is transparent, given by 2qxa = Nπ, where N is an integer. For

normal incidence we see that the transmission coefficient is an oscillating function of

the tunneling parameters and can exhibit any value between zero and one. This is in

contrast to single layer graphene, where the transmission is always perfect.

5. Klein tunneling in bilayer graphene

Bilayer graphene consists of two layers of graphene on top of each other, the second

layer being rotated by 120 degrees with respect to the first one. In this configuration

the sublattices A lie exactly on top of each other and the hopping parameter γ1 between

them is approximately 0.4 eV [31, 32], while the in-plane hopping parameter γ0 = t

is approximately an order of magnitude larger. When we consider only low energy

excitations, |E|, |E − u0| ≪ 2|γ1|, the effective Hamiltonian is given by [33, 34]

Ĥ =

(
0 (p̂x − ip̂y)

2/(2m)

(p̂x + ip̂y)
2/(2m) 0

)
+ u(x) , (48)

where the effective mass m = γ1/2V
2 ≈ 0.054me, me being the free electron mass [35].

There is also hopping between the B sublattices of both layers, which is denoted by

γ3 ≈ 0.3 eV. When we include this parameter into the description an extra term is

added to the Hamiltonian, which corresponds to so-called trigonal warping. This effect

is however only important for small wave vectors [35], we will exclude it assuming that

ka, qa≫ γ3γ1/γ
2
0 .

Let us consider an electron incident on the potential step (22) under an angle φ,

as was done in [8]. Since the potential is constant in the y-direction we can write the

solution as

Ψ(x, y) = Ψ(x)eikyy . (49)
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Inserting this into equation (1) with the Hamiltonian (48), we obtain
(
d2

dx2
− k2y

)2

ψi =

(
2m(E − u)

h̄2

)2

ψi ≡ k4ψi . (50)

The solutions are therefore given by propagating waves exp(±ikxx) and exponentially

growing and decaying modes exp(±κxx),

k2x + k2y =
2m|E − u|

h̄2
, (51)

κ2x − k2y =
2m|E − u|

h̄2
. (52)

The presence of evanescent modes is markedly different from both the Schrödinger case

and the Dirac case. Once again there are three regimes. There are electron states for

u0 < E−h̄2k2y/(2m) and hole states for u0 > E+h̄2k2y/(2m), while the region in between

is classically forbidden. In what follows we assume that u0 in equation (22) satisfies

u0 > E +
h̄2k2y
2m

. (53)

To find the spinors that are the solutions to equation (50) we note that the components

are related by
(
d

dx
+ ky

)2

ψ2 =
2m(E − u)

h̄2
ψ1 , (54)

as can be seen from the Hamiltonian (48).

Now let k =
√
2mE/h̄ be the wave vector for the propagating modes in the region

|x| > a, while q =
√
2m(u0 − E)/h̄ is the wave vector in the region |x| < a. Then the

solution for x < −a is given by

Ψ(x) = a1

(
1

se2iφ

)
eikxx + b1

(
1

se−2iφ

)
e−ikxx + c1

(
1

−sh1

)
eκxx , (55)

where ky = k sinφ, kx = k cosφ, s = sgn(E), κx =
√
k2x + 2k2y = k

√
1 + sin2 φ and

finally h1 = (
√
1 + sin2 φ− sin φ)2. The amplitude a1 is the amplitude for the incoming

wave in this expression, while b1 corresponds to the reflected wave. For x > a we have

the general solution

Ψ(x) = a3

(
1

se2iφ

)
eikxx + d3

(
1

−s/h1

)
e−κxx , (56)

where a3 is the transmission coefficient. Inside the barrier we need the most general

solution with two propagating modes and two modes with real exponentials,

Ψ(x) = a2

(
1

s′e2iθ

)
eiqxx + b2

(
1

s′e−2iθ

)
e−iqxx

+ c2

(
1

−s′h2

)
eλxx + d2

(
1

−s′/h2

)
e−λxx, (57)

where qy = q sin θ = ky because the transverse momentum is conserved. Furthermore

qx = q cos θ, s′ = sgn(E − u0), λx = q
√
1 + sin2 θ and h2 = (

√
1 + sin2 θ − sin θ)2.
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Now the coefficients ai, bi, ci and di have to be found from the continuity of ψi(x)

and the derivative dψi/dx at the points x = ±a. When the problem is solved numerically,

one sees that the transmission probability at normal incidence is exponentially small.

Similar to the case of single layer graphene, there are once again “magic angles” in

the spectrum, at which there is total transmission. The existence of magic angles in

bilayer graphene has the same consequences as in single layer graphene, meaning that

we cannot lock a conventional transistor made from bilayer graphene.

For the case of normal incidence φ = θ = 0 we can also solve the problem

analytically. The transmission coefficient is given by

t =
4ikq exp(2ika)

(q + ik)2 exp(−2qa)− (q − ik)2 exp(2qa)
, (58)

which is indeed exponentially small. When we let a go to infinity, the transmission

probability T = |t|2 becomes zero at normal incidence. Furthermore for a single n-p

junction with u0 ≫ E the following analytical solution can be found for any φ

T =
E

u0
sin2(2φ) , (59)

which also gives T = 0 at normal incidence, in contrast to the case of single layer

graphene, where normally incident electrons are always transmitted. It is also different

from the case of normal electrons, where the transmission is given by equation (47).

6. Dimensionless variables and parameters

In sections 3, 5 it was discussed that the wavefunctions Ψ of charge carriers in single

layer and bilayer graphene in a one-dimensional geometry obey equations
[
V

(
0 p̂x − ipy

p̂x + ipy 0

)
+ u(x/l)− E

]
Ψ = 0, (60)

and
[

1

2m

(
0 (p̂x − ipy)

2

(p̂x + ipy)
2 0

)
+ u(x/l)−E

]
Ψ = 0, (61)

respectively. Here l is a characteristic scale of a potential change. In dimensionless

variables (60) takes the form
[(

0 p̃x − ip̃y
p̃x + ip̃y 0

)
+ ũ(x̃)− Ẽ

]
Ψ = 0, (62)

where x̃ = x/l, p̃x = −ihd/dx̃, p̃y = py/p0, h = h̄/p0l, ũ = u/V p0 and Ẽ = E/V p0. We

denote some characteristic value of |u−E| as V p0.
Analogously, (61) can be rewritten as

[(
0 (p̃x − ip̃y)

2

(p̃x + ip̃y)
2 0

)
+ ũ(x̃)− Ẽ

]
Ψ = 0, (63)

with x̃ = x/l, p̃x = −ihd/dx̃, p̃y = py/p0, h = h̄/p0l, ũ = 2mu/p20 and Ẽ = 2mE/p20.

We denote some characteristic value of |u−E| as p20/2m.
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Thus we can introduce dimensionless Hamiltonians (we omitted tildes):

Ĥ =

(
0 p̂x − ipy

p̂x + ipy 0

)
+ u(x) (64)

for a single layer and

Ĥ =

(
0 (p̂x − ipy)

2

(p̂x + ipy)
2 0

)
+ u(x) (65)

for a bilayer. In both cases there are two substantial parameters in the problem: h and

py.

7. Standard semiclassical treatment

Charge carriers in single layer graphene are described by the Hamiltonian (64). This

Hamiltonian describes simultaneously coupled electron and hole states. According to

Appendix A, in adiabatic approximation (64) can be diagonalized up to any order of

h ≪ 1. The obtained scalar Hamiltonians describe electrons and holes separately.

The diagonalization is based on a series of unitary transformations of the original

Hamiltonian and traces back to the ideas of the Foldy-Wouthuysen transformation [36]

and the Peierls substitution in Blount’s treatment [37]. We use its variant [38, 39].

Effective electron and hole Hamiltonians L̂+ and L̂− can be written as series with

respect to the small parameter h:

L±(p̂x, x, h) = L±
0 (p̂x, x) + hL±

1 (p̂x, x) + h2L±
2 (p̂x, x) + . . . (66)

To be precise we will assume that any function of p̂x and x is defined in such a way

that p̂x acts the first. As soon as the ordering of operators has been introduced, one

can work with functions of c-numbers px and x. These functions are called “symbols”

[40, 41].

It is shown in Appendix A, that leading terms L±
0 (px, x) of the effective

Hamiltonians L±(px, x, h) are eigenvalues of H(px, x):

H(px, x)χ
±
0 (px, x) = L±

0 (px, x)χ
±
0 (px, x), (67)

where χ±
0 (px, x) are two eigenvectors of the matrix H(px, x). This gives

L±
0 (px, x) = ±|p|+ u(x), χ±

0 (px) =
1√
2

(
e−iφp

±1

)
. (68)

We note that in the absence of a magnetic field χ±
0 does not depend on x. The first

correction L±
1 (px, x) reads

L±
1 (px, x) = i

(
χ±
0

)† ∂χ±
0

∂px

∂L±
0

∂x
=

1

2

∂L±
0

∂x

∂φp

∂px
= −u

′(x)

2

py
p2x + p2y

. (69)

Standard semiclassical treatment (see Appendix B) can be applied to scalar Schrödinger-

like equations L̂±ψ± = Eψ±. We are looking for a solution in the form ψ± =

eiS
±(x)/hA±(x, h), A±(x, h) = A±

0 (x) + hA±
1 (x) + . . . This gives

A±
0 (x) =

∣∣∣∣∣
∂L±

0

∂px

∣∣∣∣∣

−1/2

exp



−i
∫
dx

(
∂L±

0

∂px

)−1 (
L±
1 +

i

2

∂2L±
0

∂px∂x

)

 (70)
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Figure 1. Classical phase space for a) n-p and b) n-p-n junctions. In the electronic

region the velocity is codirectional with the momentum and in the hole region the

velocity has an opposite direction to the momentum. Therefore electronic trajectories

are clockwise oriented but hole trajectories are oriented counterclockwise. Plus and

minus in figures denote signs of dpx/dx.

with px = dS±/dx to be found from the Hamilton-Jacobi equation L±
0 (px, x) = E, where

∣∣∣∣∣
∂L±

0

∂px

∣∣∣∣∣ =
|px|
|p| =

(
[E − u(x)]2 − p2y

)1/2

|E − u(x)| . (71)

Differentiating the Hamilton-Jacobi equation with respect to x we find

∂L±
0

∂px

dpx
dx

+
∂L±

0

∂x
= 0, (72)

whence

∂L±
0

∂px
= − 1

p′x

∂L±
0

∂x
. (73)

This gives

ψ(x) =
|E − u(x)|1/2

[
(E − u(x))2 − p2y

]1/4 e
±iS+(x)/h+iφ±

p (x)/2. (74)

Though it is possible to define locally χ±
0 in (68) as

χ±
0 (px) =

1√
2

(
e−iφp/2

±eiφp/2

)
(75)

to obtain L±
1 = 0, such a choice does not provide a single-valued function in the classical

phase space.

Let us first consider a scattering problem for py 6= 0 following Appendix B and

Appendix C. For an electron coming from the left of the classically forbidden region we

have

ψ(x) =
|E − u(x)|1/2

[
(E − u(x))2 − p2y

]1/4
(
eiS

+(x)/h+iφ+
p (x)/2 + e−iS+(x)/h+iφ−

p (x)/2−iπ/2
)

(76)
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and

Ψ(x) =
|E − u(x)|1/2

[
(E − u(x))2 − p2y

]1/4

(
eiS

+(x)/h−iφ+
p (x)/2 + e−iS+(x)/h−iφ−

p (x)/2−iπ/2

eiS
+(x)/h+iφ+

p (x)/2 + e−iS+(x)/h+iφ−
p (x)/2−iπ/2

)
, (77)

where

S±(x) = ±
∫ x

x0

√
v2(x′)− p2ydx

′, φ±
p (x) = Arg

(
±
√
v2(x)− p2y + ipy

)
, (78)

φ−
p (x) = πsgn(py)− φ+

p (x), v(x) = u(x)− E. (79)

Note that φ+
p (x) continuously depends on py when it passes through zero and φ−

p (x)

undergoes a jump of 2π. The reflection coefficient r can be computed from (76) or (77).

It is usually defined as the coefficient in front of the semiclassical solution corresponding

to the outgoing wave. One can also assume that the potential tends to a constant at

infinity and take the coefficient in front of the plane wave, which is a particular case of

the definition given above. Obviously, the reflection coefficient defined in such a way

does not depend on x. Choosing (74) as incoming and outgoing solutions, we can write

wavefunctions on the left of the classically forbidden region as

ψ(x) =
|E − u(x)|1/2

[
(E − u(x))2 − p2y

]1/4
(
eiS

+(x)/h+iφ+
p (x)/2 + r(py)e

−iS+(x)/h+iφ−
p (x)/2

)
, (80)

Ψ(x) =
|E − u(x)|1/2

[
(E − u(x))2 − p2y

]1/4

×
[(

eiS
+(x)/h−iφ+

p (x)/2

eiS
+(x)/h+iφ+

p (x)/2

)
+ r(py)

(
e−iS+(x)/h−iφ−

p (x)/2

e−iS+(x)/h+iφ−
p (x)/2

)]
, (81)

Comparing (80), (81) and (76), (77) we conclude that

r(py) = e−iπ/2. (82)

A similar calculation for a hole coming from the right gives, see also figure 1,

r(py) = eiπ/2. (83)

We paid attention to the definition of the reflection coefficient, since it may lead to

discrepancy for the Dirac particle. The problem appears due to a jump of 2π in

φ−
p (x) at any fixed x as a function of py when it goes through zero. This jump is a

consequence of the cut at φp = ±π. At any py 6= 0 this cut corresponds to infinite

negative x-component of the momentum, and does not imply any discontinuities in the

region, where the potential is finite. This jump results in the jump of π in the phase

of the wavefunction corresponding to the outgoing wave. However, the phase difference

φ−
p (x)/2−φ+

p (x)/2 = π sgn (py)/2−φ+
p (x) tends to zero when x tends to a turning point

x0 and can therefore be treated as one half of the angle around the origin in p-space

accumulating during the motion of a classicle particle from the point x to the turning

point x0 and back. The peculiar behaviour of the phase difference can mathematicaly
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be expressed as the noncommutativity of limits:

lim
py→±0

lim
x→x0

[φ−
p (x)− φ+

p (x)] = 0,

lim
x→x0

lim
py→±0

[φ−
p (x)− φ+

p (x)] = ±π. (84)

The jump in the sign of the outgoing wave must be compensated by a kink in the

reflection coefficient, since the whole wavefunction should analytically depend on py. To

get rid of the jump one can redefine the outgoing wave and write [42]

ψ(x) =
|E − u(x)|1/2

[
(E − u(x))2 − p2y

]1/4
(
eiS

+(x)/h+iφ+
p (x)/2 + r(py)e

−iS+(x)/h−iφ+
p (x)/2

)
. (85)

Though preserving the analyticity of r(py), such a definition introduces an artificial

jump of the phase as a function of x upon reflection at negative py. Therefore we do

not use it below.

The reflection coefficient, defined in accordance with (80), (81) does not depend on

the sign of py. It is completely defined by the orientation of the phase space, which is

clockwise for an electron region and counterclockwise for a hole region (see figure 1).

Finally, the reflection can be written as

r(py) = e∓iπ/2, (86)

where ‘-’ corresponds to electron and ‘+’ to hole regions.

It is important to note, that the phase −π/2 and the module 1 of the reflection

coefficient (86) were obtained under the assumption that there is no multiplicity change!

It is not the case when py → 0 and the trajectory in the phase space tends to a separatrix,

see figure 2.

Let us now turn to bilayer graphene. The Hamiltonian describing the charge carrier

dynamics reads

H =

(
0 (p̂x − ipy)

2

(p̂x + ipy)
2 0

)
+ u(x) (87)

Eigenvalues and eigenvectors of H(px, x) are

L±
0 = ±p2 + u(x), χ±

0 =
1√
2

(
e−2iφp

±1

)
. (88)

We obtain

ψ(x) =
1

∣∣∣E − u(x)∓ p2y
∣∣∣
1/4
e±iS+(x)/h+iφ±

p (x),

S(x) =
∫ x

x0

√
±[E − u(x)]− p2ydx. (89)

Obviously, the result (86) is valid for the bilayer as well, since the orientation of

the phase space is the same.

Between two classically forbidden regions effective Hamiltonians superimpose the

following quantization conditions (see Appendix C for details):

1

h

∮
pxdx+

β

2
∆φp = 2π

(
n+

ν

4

)
, (90)
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a) b)

Figure 2. Classical phase space for n-p-n junction in a) single and b) bilayer

graphene. Different trajectories correspond to different values of py. One sees that

for normal incidence (separatrices) the smoothest classical trajectory corresponds to

total transmission in single layer graphene and to total reflection in bilayer graphene.

where β = 1, 2 for single and bilayer respectively, ν = 2 is the Maslov index and ∆φp

is the total phase gain along the closed classical trajectory. The term β∆φp/2 is the

Berry phase in graphene [43]. It is clear that ∆φp acquires a non-zero value only if

the trajectory in p-space encloses the origin. Therefore in the absence of magnetic field

∆φp = 0. Quantization condition (90) allows one to determine resonance angles.

Though the considered diagonalization is very powerful to deal with complicated

matrix Hamiltonians in a classically allowed region, it possesses a substantial

disadvantage: it treats electrons and holes separately neglecting tunneling effects. In the

classically forbidden region when |p| = 0, i.e. px = ipy effective Hamiltonians L±
0 become

degenerate. At this point electron to hole transition may occur and the diagonalization

fails. This transition is the origin of the Klein tunneling.

8. Normal incidence

In the case of normal incidence py = 0 and at the point x0, where u(x0) = E there is a

multiplicity change, i.e. effective Hamiltonians L±
0 become degenerate (see figure 2). To

study wavefunctions in this case one can not apply a standard semiclassical treatment,

described in Section 7, since there may be a “jump” between L+ and L−. Fortunately,

for the normal incidence in graphene there is an exact pseudospin conservation, which

allows one to study this case in detail.

For py = 0 equations (62), (63) read

[σxp̂
β
x + u(x)− E]Ψ = 0, (91)

where β = 1, 2 for single and bilayer respectively. Eigenvectors of σxp̂
β
x do not depend

on p̂βx , therefore (91) can easily be diagonalized, which leads to

[±p̂βx + u(x)−E]η1,2 = 0, (92)

where

Ψ =

(
1

1

)
η1 +

(
1

−1

)
η2. (93)
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Figure 3. Comparison of the initial potential and the real part of the effective

potential.

In this case the eigenvalue of σx (“pseudospin”) persists. Pseudospin conservation leads

to very different physical consequences for single and bilayer graphene.

For single layer graphene pseudospin conservation means the conservation of the

x-component of the velocity. Equation (92) is the first order differential equation, which

can be solved exacly. We obtain

η1,2 = C1,2 exp
(
±i
∫ x

x0

[E − u(x′)]dx′
)
, (94)

where C1,2 are some constants. The absence of the reflected wave in (94) means that for

any potential shape one has a perfect transmission. Thus we conclude that at the point

px = 0 there is a total transition between electron and hole states since Hamiltonians

(68) depend on |p| in contrast to (92)!

For bilayer graphene pseudospin conservation is equivalent to the conservation of

particle type, as is seen from the comparison of (88) and (92). Therefore, an incoming

particle obeys the Schrödinger equation (92) everywhere. For a “Klein-setup” this leads

to exponentially decaying transmission as a function of a potential width and height.

Total transmission for normally incident electrons in single layer graphene and its

exponential damped behaviour in bilayer have natural explanations of classical phase

space (figure 2). In both cases the most probable process corresponds to the smoothest

trajectory, constructed from separatrix pieces. For the single layer such a trajectory goes

through the barrier and gives total transmission, while for bilayer one has to choose the

trajectory reflected from the barrier to avoid discontinuity in the second derivative.

9. Exact reduction to effective Schrödinger equations

In Section 7 it was discussed that the standard adiabatic diagonalization fails to describe

Klein tunneling, since it treats electrons and holes separately. However the existence of
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the exact diagonalization (Section 8) for a normal incidence raises the issue of a possible

generalization for angular scattering. We shall show that for a single layer graphene

there exists an exact transformation, reducing the original Dirac equation to a scalar

Schrödinger-like equation with a complex potential. It is clear that such a procedure

can not be a unitary transformation of the original Hermitian Hamiltonian.

Let us turn back to the Dirac equation for single layer and write it in the form

(σp+ v(x))Ψ = 0, (95)

where p = (p̂x, py), v(x) = u(x) − E. Let us act on the last equation from the left by

the operator σp− v(x). Then we get

(σp− v(x))(σp+ v(x))Ψ = (p̂2x + p2y − v(x)2 + σx[p̂x, v(x)])Ψ

= (p̂2x + p2y − v(x)2 − ihσxv
′(x))Ψ = 0. (96)

Remarkably, (96) contains only the single matrix σx. Therefore it can easily be

diagonalized. We write

Ψ =

(
1

1

)
η1 +

(
1

−1

)
η2 (97)

and obtain
(
h2

d2

dx2
+ v(x)2 − p2y ± ihv′(x)

)
η1,2 = 0. (98)

Functions η1,2 are not independent and the connection formula can be obtained from

(95). Function η2 can be reconstructed from η1 as

η2 =
1

py

(
h
d

dx
+ iv(x)

)
η1. (99)

In figure 3 one sees the initial potential landscape and the real part of the effective

potential in (98). Though this equation takes the form of a Schrödinger equation, there

are two substantial distinctions as compared to a common Schrödinger particle: i) the

effective potential is complex and ii) it depends on energy.

10. Single n-p junction

10.1. Exact solution in the case of a linear n-p junction

Let us first consider an exacly solvable model for a linear potential v(x) = αx, α > 0

[44]. Introducing a new variable x′ = (α/h)1/2x and new y-component of the momentum

p′y = (hα)−1/2py we exclude h and α from (98). Then it takes the form (we omit primes):
(
d2

dx2
+ x2 − p2y + i

)
η1 = 0. (100)

Introducing a new variable z such that x = ξz we have:
(
d2

dz2
+ ξ2(i− p2y) + ξ4z2

)
η1 = 0. (101)
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Choosing an appropriate value for ξ we can reduce (101) to the Weber’s equation [45]

w′′(z) +

(
ν +

1

2
− z2

4

)
w(z) = 0. (102)

Indeed, choosing ξ = e−iπ/4/
√
2 and solving the Weber’s equation [45, 46] we obtain

η1 = c1Dν(
√
2eiπ/4x) + c2D−ν−1(

√
2e3iπ/4x), (103)

where ν = ip2y/2 and Dν are the parabolic cylinder functions. For these functions the

following identities hold:

∂Dν(z)

∂z
= νDν−1(z)−

z

2
Dν(z),

∂Dν(z)

∂z
=
z

2
Dν(z)−Dν+1(z). (104)

Applying the first equality from (104) we find
(
∂

∂x
+ ix

)
Dν(

√
2eiπ/4x) =

√
2νeiπ/4Dν−1(

√
2eiπ/4x). (105)

From the second equality in (104) we have
(
∂

∂x
+ ix

)
D−ν−1(

√
2e3iπ/4x) =

√
2e−iπ/4D−ν(

√
2e3iπ/4x). (106)

Substituting (105), (106) into (99) we obtain:

η2 =
1

py

(
d

dx
+ ix

)
η1

=
c1
py

√
2νeiπ/4Dν−1(

√
2eiπ/4x) +

c2
py

√
2e−iπ/4D−ν(

√
2e3iπ/4x). (107)

From (103), (107) we have for Ψ = (ψ1, ψ2):

ψ1,2(x) = η1(x)± η2(x)

= c1

(
Dν(

√
2eiπ/4x)±

√
2νeiπ/4

py
Dν−1(

√
2eiπ/4x)

)

+ c2

(
D−ν−1(

√
2e3iπ/4x)±

√
2e−iπ/4

py
D−ν(

√
2e3iπ/4x)

)
. (108)

Using the asymptotic expansions of the parabolic cylinder functions (see

Appendix D), we find when x→ ∞ (hole region):

ψ1,2 → c1z
ν
1e

−ix2/2

+ c2

[
−

√
2π

Γ(ν + 1)
zν2e

−ix2/2−iπ(ν+1) ±
√
2e−iπ/4

py
z−ν
2 eix

2/2

]
, (109)

and when x → −∞ (electron region):

ψ1,2 → c1

[
(z̄2)

νe−ix2/2 ±
√
2π

Γ(1− ν)

√
2νeiπ/4

py
(z̄2)

−νeix
2/2−iπν

]

± c2

√
2e−iπ/4

py
(z̄1)

−νeix
2/2, (110)

where z1 =
√
2eiπ/4|x|, z2 =

√
2e3iπ/4|x| and a bar means complex conjugation.
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Now we turn to the discussion of the scattering problem. While tunneling through

the barrier the Dirac particle turns from an electron to a hole or vice versa. The

x-component of the group velocity of the hole vx = ∂L−
0 /∂px = −px/p has an opposite

sign with respect to its momentum px. Let us consider an electron, coming from

−∞ with a positive velocity vx. It corresponds to the action S+(x) ≃ −x2/2, since
px = ∂S+(x)/∂x ≃ −x > 0 and vx = px/p > 0. Thus, the reflected electron

corresponds to S−(x) ≃ x2/2. The transmitted hole with a positive velocity has a

negative momentum px. Hence it corresponds to the action S−(x) ≃ −x2/2. From the

absence of the incoming wave in the hole region we find c2 = 0.

Let us consider (81) at infinity. Then we have for the action:

S+(x) =
∫ x

sgn (x)|py|

√
y2 − p2ydy

=
1

2
sgn (x)




|x|
√
x2 − p2y − p2y ln




∣∣∣∣∣
x

py

∣∣∣∣∣+

√√√√
(
x

py

)2

− 1







, (111)

where we assumed that |x| > |py|. For large x we obtain

S+(x) ≃ 1

2
sgn (x)

{
x2 − p2y

2
− p2y ln

(
2|x|
|py|

)}
. (112)

Thus for large negative x (81) reads

Ψ(x) = e−ix2/2+ip2y/4+(i/2)p2y ln(2|x|/|py|)
(

1

1

)

+r(py)e
ix2/2−ip2y/4−(i/2)p2y ln(2|x|/|py|)

(
e−iπ sgn (py)/2

eiπ sgn (py)/2

)
. (113)

This gives for the reflection

r(py) =

√
π|py|

Γ(1− ν)
e−πp2y/4eiθ(py)−iπ/2, (114)

where θ(py) = p2y/2− (p2y/2) ln(p
2
y/2)− π/4. Using equalities

|Γ(1− ν)|2 = Γ(1− ν)Γ(1 + ν) = νΓ(ν)Γ(1− ν) =
πν

sin(πν)

=
πp2y

eπp
2
y/2 − e−πp2y/2

(115)

we can write the reflection coefficient as

r(py) =
√
1− e−πp2yeiθ(py)−iγ(py)−iπ/2, (116)

where γ(py) = Arg Γ(1 − ip2y/2). From the asymptotic expansion of the Γ-function at

large arguments [45], one concludes that γ(py) tends to θ(py) when py tends to infinity.

At small py the reflection coefficient is proportional to |py|. This nonanalytic behaviour is
compensated by the jump of the phase of the reflected wave as we discussed in Section 7.

Comparing the coefficient in front of incoming and transmitted waves we find for

the transmission amplitude

t = eiπsgn (py)/2eiπν = eiπsgn (py)/2e−πp2y/2. (117)
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For the transmission probability we thus have

|t|2 = e−πp2y = e−πp2 sin2 φp (118)

This result was first obtained by Cheianov and Fal’ko [44]. Considering the scattering

from the right to the left we find that the transmission amplitude in this case is

t = −e−iπsgn (py)/2e−πp2y/2. (119)

The transfer matrix connecting incoming and outgoing waves from the right to the

left of the barrier for positive α is

T+ = e−iπsgn (py)/2




eπp
2
y/2

(
eπp

2
y − 1

)1/2
ei(γ−θ−π/2)

(
eπp

2
y − 1

)1/2
ei(θ−γ−π/2) −eπp2y/2


 . (120)

For negative α the transfer matrix reads

T− = eiπsgn (py)/2




−eπp2y/2
(
eπp

2
y − 1

)1/2
ei(θ−γ−π/2)

(
eπp

2
y − 1

)1/2
ei(γ−θ−π/2) eπp

2
y/2


 . (121)

10.2. Transmission probability in semiclasical approximation

Let us consider an outgoing hole on the right of a generic potential monotonously

growing from the left to the right. In semiclassical approximation it is described by

the wavefunction

Ψ(x) =
e−iπ sgn (py)/2|E − u(x)|1/2
[
(E − u(x))2 − p2y

]1/4 e−iS+(x)/h

(
eiφ

+
p (x)/2

e−iφ+
p (x)/2

)
. (122)

Using equalities

cos

(
φ+
p

2

)
=

√
1 + cosφ+

p

2
, sin

(
φ+
p

2

)
=

√
1− cos φ+

p

2
,

cosφ+
p =

|px|
|p| =

[(E − u(x))2 − p2y]
1/2

|E − u(x)| (123)

we write it as

Ψ(x) =
e−iπ sgn (py)/2

[
v2 − p2y

]1/4 [
v +

√
v2 − p2y

]1/2 e
−iS+/h



 v +
√
v2 − p2y + ipy

v +
√
v2 − p2y − ipy



 . (124)

with v(x) = u(x)− E. According to (124) the components of Ψ(x) can be represented

exactly as a sum or a difference of functions η1, η2 obeying Schrödinger-like equations

(98) with a complex potential. Despite the complexity of the potential, according to [47],

to connect a transmitted wave on the right of the barrier with an incoming wave on the

left of the barrier one can still use an analytic continuation in the classically forbidden

region similar to [48]. In contrast to a usual Schrödinger equation the transmitted

hole has a negative momentum, so Ψ(x) in (122) is proportional to e−iS+/h, but not to

eiS
+/h. Therefore the passage should be done in the lower complex half-plane. Since
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both functions η1 and η2 allow analytic continuations in the lower half-plane, Ψ(x) can

also be continued in the lower half-plane.

Performing the passage and connecting the outgoing wave with an incoming wave,

we obtain for the transmission coefficient:

t = eiπsgn (py)/2e−K/h, K =

∣∣∣∣
∫ x2

x1

√
p2y − v2(x)dx

∣∣∣∣ , (125)

where x1 and x2 are two turning points, i.e. solutions for the equation p2y − v2(x) = 0.

The standard complex WKB technique [49, 50, 47] does not allow one to compute

the reflection coefficient with an exponential accuracy. The module of the reflection

coefficient can be computed from the unitarity of the scattering matrix: |r|2 + |t|2 = 1.

This gives

|r| =
√
1− e−2K/h. (126)

The semiclassical phase of the reflection coefficient can be reconstructed from (82), (83).

Thus in semiclassical approxiamtion we obtain:

r =
√
1− e−2K/he∓iπ/2, (127)

where ‘-’ corresponds to the electron and ‘+’ to the hole region. For small py any

potential can be linearized in the classically forbidden region. Comparing (117) and

(125) we see that in the limit py → 0 the semiclassical transmission becomes exact.

Therefore (125) can be used as a uniform approximation for the transmission coefficient

at any py. Then the uniform approximation for the reflection coefficient reads

r =
√
1− e−2K/he∓iπ/2+iΘ, (128)

where Θ tends to zero when py tends to infinity. For the phase Θ we used the expression

[51, 52]

Θ =
K

πh
− K

πh
ln
(
K

πh

)
− π

4
− Arg Γ

(
1− iK

πh

)
, (129)

which was obtained by the replacement πp2y/2 by K/h in θ(py)− γ(py).

11. Klein tunneling in n-p-n junctions. Fabry-Pérot interferometer

Let us consider some generic potential barrier u(x). In graphene it implies n-p-n junction

(see figure 3). In terms of (98) n-p-n junction becomes a complex double-hump potential.

The transfer matrix in this case is

T = T+

(
eiS/h 0

0 e−iS/h

)
T−, S =

∫ x3

x2

√
v2(x)− p2ydx, (130)

where we assume that x2 < x3. There is no extra phase coming from φ±
p since each of

these functions takes the same values at both turning points x2, x3, lying in the hole

region. The transmission coefficient reads

t =
1

T11
= − e−iS/he−K1/h−K2/h

1 + e−2iS/h−iΘ1−iΘ2

√
1− e−2K1/h

√
1− e−2K2/h

. (131)
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The obtained transmission amplitude can easily be treated in terms of a sum of

probability amplitudes of multiscattering processes leading to transmission [42]. One

sees that for normal incidence K1 = K2 = 0 and the module of the transmission

coefficient becomes one. Transmission resonances can be found from the condition:
S

h
+

Θ1 +Θ2

2
= π

(
n +

1

2

)
, (132)

which coincides with the quantization condition (90) for large py. For a symmetric n-p-n

junction the resonant transmission is always one, since K1 = K2. For an asymmetric

junction resonant values of transmission decay as

t ∼ 1

cosh(K1/h−K2/h)
(133)

when K1/h ≫ 1 and K2/h ≫ 1. From (133) one sees that resonant values of

transmission exponentially decay as a function of |K1 − K2|. Such a fast decay can

be crucial if one wants to weaken the influence of side resonances.

12. Numerical results

In figures 4-6 we compare our semiclassical predictions with numerical results, obtained

from a multistep approximation of the initial potential. A check on the accuracy of the

calculation for constant py is provided by the current

jx = Ψ†σxΨ, d jx/dx = 0. (134)

To simulate an n-p junction we used the potential

V (x/l1) = 0.5Umax [1 + tanh(10x/l1 − 5)] (135)

with a characteristic length scale l1. An n-p-n junction was simulated as an n-p junction

with a characteristic length l1, a p-n junction with a characteristic length l3 and a

constant potential in between of the length l2.

In figure 4 we show the comparison of our numerical result for an n-p junction with

the semiclassical transmission (125) and the transmission for a linear potential (117).

While the semiclassical prediction works uniformly over the entire range of angles, the

prediction obtained from a linear potential works only for small angles.

In figure 5 we show the comparison of our numerical results with the prediction (131)

for a symmetric n-p-n junction. We also show the semiclassical result, which is obtained

by setting Θ1 = Θ2 = 0. The agreement between the latter answer and numerics gets

better as the angle increases, i.e. deep in the semiclassical regime. The result (125)

uniformly approximates the numerical data over the entire range of angles.

In figure 6 the result for an asymmetric n-p-n junction is shown. The height of

resonances is seen to decay. The suppression of side resonances for asymmetric junctions

in single layer graphene can have essential consequences for attemps to confine Dirac

particles!

Numerical computations for bilayer graphene using the above procedure are less

accurate, due to the presence of real exponentials everywhere. Therefore we were unable
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Figure 4. The angular dependence of the transmission coefficient for a particle of

energy 80 meV incident on an n-p junction of height 200 meV. The potential is given

by equation (135), with l1 = 70 nm. The blue line shows the numerical result with 49

steps, the dashed line shows the semiclassical result (125) and the red line shows the

result for a linear potential (117), where the parameter α was taken as the derivative

at the central point of the junction.
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Figure 5. The angular dependence of the transmission coefficient for a particle of

energy 80 meV incident on an n-p-n junction of height 200 meV. The barrier width

l2 = 250 nm and n-p and p-n regions have characteristic lengths l1 = l3 = 100 nm.

The blue line shows the numerical result for 99 steps, the red line shows the uniform

approximation (131) and the orange line shows the semiclassical answer (Θ1 = Θ2 = 0).
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to check the quantization condition (90) numerically with a high precision. To check

the accuracy of the computation we used the current

jx = ψ1

(
d

dx
+ ky

)
ψ∗
2 − ψ∗

2

(
d

dx
− ky

)
ψ1 (136)

+ ψ2

(
d

dx
− ky

)
ψ∗
1 − ψ∗

1

(
d

dx
+ ky

)
ψ2, d jx/dx = 0. (137)

In figure 7 we show our numerical results for a symmetric and an asymmetric n-p-n

junction with the same shape of the potential as before. In contrast to the case of single

layer, resonances do not seem to decay in this case.

13. Conclusion

Let us summarize our main results. The detailed analysis of the reflection-and-

transmission problem for the Dirac electrons demonstrates essential differences from

the conventional Schrödinger case, due to the role of the Berry phase. The reflection

coefficient turns out to be nonanalytic function of the transverse momentum py vanishing

as |py| at py → 0.

We have presented a complete treatment of the chiral tunneling for both single and

bilayer graphene in terms of a classical phase space. This gives a natural explanation of

complete transmission of normally incident wave for single layer and its exponentially

damped transmission in bilayer. We have also demonstrated that, for the case of

nonsymmetric n-p-n junction in single layer graphene, there is total transmission for

the normal incidence only, and other maxima are suppressed. Our numerical studies

show that for the case of bilayer there are always magic angles with total transmission.
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Appendix A. Effective Hamiltonians in adiabatic approximation

In this part of the Appendix we show how to reduce in adiabatic approximation an

initial matrix Hamiltonian to a set of effective scalar Hamiltonians. Our consideration

follows [38, 39].

Let us consider an eigenvalue problem for an Hermitian matrix Hamiltonian Ĥ,

H(−ihd/dx, x)Ψ(x) = EΨ(x) , (A.1)
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Figure 6. The angular dependence of the transmission coefficient for a particle of

energy 80 meV incident on an n-p-n junction of height 200 meV. The barrier width

l2 = 250 nm and the n-p and p-n regions have characteristic lengths l1 = 150 nm and

l3 = 50 nm, respectively. The blue line shows the numerical results for 99 steps, while

the red line shows the uniform approximation (131).
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Figure 7. The angular dependence of the transmission coefficent for a particle of

energy 17 meV incident on symmetric and asymmetric n-p-n junctions in bilayer

graphene. Each junction has a height of 50 meV and a width l2 = 100 nm. The

blue line shows the numerical result for a symmetric junction with l1 = l3 = 10 nm,

while the red line shows an asymmetric junction with l1 = 20 nm and l3 = 40 nm. All

calculations were done with 99 steps per junction.
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where we assume that p̂x = −ihd/dx acts first and x acts second. In what follows we

always assume this operator ordering. Let us introduce a vector operator χ̂ and a scalar

wave function ψ by the requirement

Ψ(x) = χ(−ihd/dx, x, h)ψ(x) . (A.2)

We want ψ to satisfy an eigenvalue problem

L(−ihd/dx, x, h)ψ(x) = Eψ(x) , (A.3)

with an effective Hermitian Hamiltonian L̂. Substituting (A.3) in (A.1) we obtain:

(Ĥχ̂− χ̂L̂)ψ(x) = 0. (A.4)

The last equality will be fulfilled for any ψ(x) if the following operator equality holds:

H(−ihd/dx, x)χ(−ihd/dx, x, h) = χ(−ihd/dx, x, h)L(−ihd/dx, x, h). (A.5)

We will solve it by passing to symbols of operators (see [40, 41]):

smb[A(−ihd/dx, x)B(−ihd/dx, x)] = A(px − ihd/dx, x)B(px, x) . (A.6)

Applying this formula to the above case, we obtain

H(px − ihd/dx, x)χ(px, x, h) = χ(px − ihd/dx, x, h)L(px, x, h) . (A.7)

Let us expand this expression with respect to the parameter h≪ 1. In zeroth order we

get

H(px, x)χ0(px, x) = L0(px, x)χ0(px, x) , (A.8)

where L0(px, x) = L(px, x, 0), χ0(px, x) = χ(px, x, 0). The first order term in the

expansion gives

− i
∂H

∂px

∂χ0

∂x
+Hχ1 = −i∂χ0

∂px

∂L0

∂x
+ L0χ1 + χ0L1 , (A.9)

where L1 and χ1 are the first order terms in L and χ with respect to h. The above

expression can be rewritten as

(H − L0)χ1 = i
∂H

∂px

∂χ0

∂x
− i

∂χ0

∂px

∂L0

∂x
+ χ0L1 . (A.10)

Let us multiply the last equation by χ†
0 from the left. Since bothH and L0 are Hermitian

matrices, we obtain

L1 = −iχ†
0

∂H

∂px

∂χ0

∂x
+ iχ†

0

∂χ0

∂px

∂L0

∂x
, (A.11)

where we used the equality χ†
0χ0 = 1.
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Appendix B. Semiclassical approximation

Appendix B.1. x-representation

To solve equation (A.3) we will use the semiclassical ansatz

ψ(x) = eiS(x)/hA(x, h) . (B.1)

Then (A.3) can then be rewritten as

L(dS/dx− ihd/dx, x, h)A(x, h) = EA(x, h) . (B.2)

This equation can be expanded order by order in x which to zeroth order gives the

Hamilton-Jacobi equation

L0(dS/dx, x) = E . (B.3)

From this equation we can determine the action S(x), as is well known from classical

mechanics [53]. To first order in h we obtain the equation

− i
∂L0

∂px

∂A0

∂x
+ L1A0 −

i

2

∂2L0

∂p2x

d2S

dx2
A0 = 0 , (B.4)

where all terms should be evaluated at px = dS/dx. When multiplying by the amplitude

A0, equation (B.4) can be rewritten as

− i

2

d

dx

(
∂L0

∂px
A2

0

)
+

(
L1 +

i

2

∂2L0

∂px∂x

)
A2

0 = 0 , (B.5)

where the total derivative acts on both x and px = dS/dx. This equation can be solved

exactly to determine the amplitude

A0 =

∣∣∣∣∣
∂L0

∂px

∣∣∣∣∣

−1/2

exp



−i
∫
dx

(
∂L0

∂px

)−1 (
L1 +

i

2

∂2L0

∂px∂x

)

 (B.6)

≡
∣∣∣∣∣
∂L0

∂px

∣∣∣∣∣

−1/2

exp




∫
dx

(
∂L0

∂px

)−1

M



 , (B.7)

where we have defined M . Using equation (A.11) it can be written as

M = −χ†
0

∂H

∂px

∂χ0

∂x
+ χ†

0

∂χ0

∂px

∂L0

∂x
+

1

2

∂2L0

∂px∂x
. (B.8)

Appendix B.2. p-representation

We can also solve equation (A.3) by passing to p-representation [40, 41]:

L(
1
px,

2

ihd/dpx, h)ψ̃(px) = Eψ̃(px) . (B.9)

In this equation px acts first, while ihd/dpx acts second, contrary to the case we

considered before. To solve this equation, we use the semiclassical ansatz

ψ̃(px) = e−iS̃(px)/hÃ(px, h) . (B.10)
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Similarly to equation (B.2) equation (B.9) can be rewritten as

L(px, dS̃/dpx + ihd/dpx, h)Ã(px, h) = EÃ(px, h) , (B.11)

When this equation is expanded order to order in h, one obtains to zeroth order the

Hamilton-Jacobi equation

L0(px, dS̃/dpx) = E , (B.12)

from which the action S̃(px) can be determined. The first order term becomes

i
∂L0

∂x

∂Ã0

∂px
+ L1Ã0 +

i

2

∂2L0

∂x2
d2S̃

dp2x
Ã0 + i

∂2L0

∂x∂px
Ã0 = 0 , (B.13)

where all terms have to be evaluated at x = dS̃/dpx. After multiplication by Ã0 one

finds

i

2

d

dpx

(
∂L0

∂x
Ã2

0

)
+

(
L1 +

i

2

∂2L0

∂px∂x

)
Ã2

0 = 0 , (B.14)

which can be solved exactly to give

Ã0 =

∣∣∣∣∣
∂L0

∂x

∣∣∣∣∣

−1/2

exp



i
∫
dpx

(
∂L0

∂x

)−1 (
L1 +

i

2

∂2L0

∂px∂x

)

 (B.15)

≡
∣∣∣∣∣
∂L0

∂x

∣∣∣∣∣

−1/2

exp



−
∫
dpx

(
∂L0

∂x

)−1

M



 . (B.16)

Using equation (A.11) the quantity M can then be written as

M = −χ†
0

∂H

∂px

∂χ0

∂x
+ χ†

0

∂χ0

∂px

∂L0

∂x
+

1

2

∂2L0

∂px∂x
. (B.17)

Appendix B.3. Matching

Since the solutions (B.1) and (B.10) come from the same equation, they should be

related. To find out what this relation is, we look at the Fourier representation of (B.1),

which is defined by

φ̃(px) =
1√
2πh

∫ ∞

−∞
ei(S(x)−pxx)/hA0(x)dx (B.18)

Since the parameter h is assumed to be small, we can calculate this integral using the

stationary phase method. The result is

φ̃(px) =
A0(xs)√
|S ′′(xs)|

ei(S(xs)−pxxs)/h+i sgn(S′′(xs)) π/4, (B.19)

where the point xs = xs(px) at which the phase is stationary is to be found from the

equality

S ′(xs) = px . (B.20)

From the comparison of (B.10) and (B.19) we find [40, 41]

φ̃(px) = ei sgn(S
′′(xs))π/4ψ̃(px) . (B.21)
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Figure C1. The phase space of a classical particle is covered by maps I, II, III,

IV . Regular maps I and III can be uniquely projected onto the x-axis, while singular

maps II and IV can be uniquely projected onto the px-axis. The maps are chosen to

overlap.

Appendix C. Bohr-Sommerfeld quantization rule

Now let us consider the phase space which is shown in figure C1. The part I of the

phase trajectory can be projected onto the x-axis. Therefore we can use a standard

WKB ansatz in this region. On the contrary, in region II we can use a standard

WKB ansatz in p-representation. Since regions I and II overlap, functions are related

according to (B.21). Since S ′′(x2) < 0, we have ψI(x) → ψ̃II(px)e
−iπ/4.

It is easily seen that the above reasoning can also be applied to regions II and III.

Since S ′′(x3) > 0 we obtain ψIII(x) → ψ̃II(px)e
iπ/4, or

ψI(x) → ψIII(x)e
−iπ/2 . (C.1)

So, passing the turning point lying in the region II we have picked up an extra factor

exp(−iπ/2). Since S ′′(x4) < 0 and S ′′(x1) > 0 we pick up another factor of exp(−iπ/2)
when we go through region IV and pass the second turning point,

ψIII(x) → ψI(x)e
−iπ/2 . (C.2)

In passing one full turn along the circle, one therefore sees that ψI(x) → ψI(x)e
−iπ.

The wavefunction should be single-valued, which means that the exponent should be a

multiple of 2π. From equations (B.1) and (B.7) we therefore find

1

h

∮
pxdx− φB − π = 2πn , (C.3)

where px = S ′(x) is to be found from the Hamilton-Jacobi equation (B.3). The quantity

φB is the Berry phase, defined by

φB = i
∮
dx

(
∂L0

∂p

)−1 (
−χ†

0

∂H

∂px

∂χ0

∂x
+ χ†

0

∂χ0

∂px

∂L0

∂x
+

1

2

∂2L0

∂p∂x

)
. (C.4)
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Equation (C.3) can be rewritten as the Bohr-Sommerfeld quantization rule

1

2π

∮
pxdx = h

(
n +

1

2
+
φB

2π

)
, (C.5)

Looking back at the above derivation one sees that the term 1/2 can be written as ν/4,

where ν is the number of turning points (Maslov index in this particular case) [41].

Appendix D. Asymptotic expansions of parabolic cylinder functions in

different Stokes sectors

For completeness we placed in this section the asymptotic expansions of the parabolic

cylinder functions in different Stokes sectors at |z| → ∞ according to [46]:

Dν(z) ∼





e−z2/4zν(1 +O[z−2]), −π/2 < arg (z) ≤ π/2,

e−z2/4zν(1 +O[z−2])− ez
2/4−iπν

√
2πz−ν−1

Γ(−ν)
(1 +O[z−2]), arg (z) ≤ −π/2

e−z2/4zν(1 +O[z−2])− ez
2/4+iπν

√
2πz−ν−1

Γ(−ν)
(1 +O[z−2]), arg (z) > π/2

(D.1)

We assume that −π < arg (z) < π.
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