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Temperature dependent resistivity in bilayer graphene due to flexural phonons
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We have studied electron scattering by out-of-plane (flexural) phonons in doped suspended bilayer
graphene. We have found the bilayer membrane to follow the qualitative behavior of the monolayer
cousin. In the bilayer, different electronic structure combine with different electron-phonon coupling
to give the same parametric dependence in resistivity, and in particular the same temperature T

behavior. In parallel with the single layer, flexural phonons dominate the phonon contribution to
resistivity in the absence of strain, where a density independent mobility is obtained. This contri-
bution is strongly suppressed by tension, and in-plane phonons become the dominant contribution
in strained samples. Among the quantitative differences an important one has been identified: room
T mobility in bilayer graphene is substantially higher than in monolayer. The origin of quantitative
differences has been unveiled.
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I. INTRODUCTION

Bilayer graphene continues to attract a great deal
of attention because of both fascinating fundamental
physics1 and possible applications.2 Recent realization
of suspended monolayer3,4 and bilayer1 graphene sam-
ples made possible a direct probe of the intrinsic, un-
usual properties of these systems. In particular, intrin-
sic scattering mechanisms limiting mobility may now be
unveiled.5 It has been recently shown that in suspended,
non-strained monolayer graphene room temperature T
mobility is limited to values observed for samples on
substrate due to scattering by out of plane — flexural

— acoustic phonons.6 This limitation can, however, be
avoided by applying tension. Bilayer graphene has a dif-
ferent low energy electronic behavior as well as different
electron-phonon coupling. It is then natural to wonder
what is the situation in the bilayer regarding electron
scattering by acoustic phonons, and in particular by flex-
ural phonons (FPs).

In the present work the T dependent resistivity due
to scattering by both acoustic in-plane phonons and FPs
in doped, suspended bilayer graphene, has been investi-
gated. We have found the bilayer membrane to follow
the qualitative behavior of the monolayer parent.6,7 Ex-
plicitly, at experimentally relevant T , the non-strained
samples show quadratic in T resistivity with logarithmic
correction, ̺ ∼ T 2 ln(T ), and constant mobility. Electron
scattering by two FPs gives the main contribution to the
resistivity in this case, and is responsible for the T 2 de-
pendence. Suspended samples may also be under strain
either due to the charging gate8 or due to the experi-
mental procedure to get suspended samples, or even by
applying strain in a controlled way.9,10 Under uniaxial or
isotropic strain u the T dependence of resistivity due to
FPs becomes quartic at high strain u ≫ u∗, ̺ ∼ T 4/u3,
and quadratic at low strain u ≪ u∗, ̺ ∼ T 2/u, where
u∗ ≈ 10−4T (K). These contributions are weaker than

that coming from scattering by in-plane phonons, and
in strained samples the latter dominates resistivity, as
has been found for monolayer graphene.6 An interesting
quantitative difference with respect to suspended mono-
layer has been found. In the latter, room T mobility µ is
limited to values obtained for samples on substrate due
to FPs, µ ∼ 1 m2/(Vs).6 In bilayer, quantitative differ-
ences in electron-phonon coupling and elastic constants
lead to room T enhanced µ ∼ 10 − 20 m2/(Vs), even in
non-strained samples.

The paper is organized as follows. In Sec. II we intro-
duce long wavelength acoustic phonons in the framework
of elasticity theory. We show how the dispersion rela-
tion of FPs are affected by the presence of tension over
the sample. Then, we review the electronic low-energy
description of bilayer graphene and deduce the electron-
phonon coupling within this approach in Sec. III. The
variational approach used in order to study the T depen-
dent resistivity due to scattering by in-plane and FPs
and a summary of our results in different regimes of T
and strain are presented in Sec. IV. Sec. V is devoted
to discuss the implications of these results, the differ-
ences between monolayer and bilayer and some experi-
mental consequences. Finally, we expose our conclusions
in Sec. VI. Some technical aspects are treated in detail
in appendices. In Appendix. A we present the collision
integral due to scattering by acoustic phonons, and in
Appendix B its linearized form is derived. Details on the
calculation of the resistivity using the variational method
are given in Appendix C. In Appendix D we discuss how
anharmonic effects are partially suppressed by the pres-
ence of strain.

II. ACOUSTIC PHONONS

At long-wavelengths the elastic behavior of monolayer
graphene is well approximated by that of an isotropic
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continuum membrane11,12 whose free-energy reads,13,14

F =
1

2
κ

ˆ

dxdy(∇2h)2 +
1

2

ˆ

dxdy(λu2ii + 2µu2ij). (1)

The first and second terms in Eq. (1) represent the bend-
ing and stretching energies, respectively. Summation
over indices is assumed. In-plane distortions are denoted
by u(r) and out-of-plane h(r), with r = (x, y), such that
the new position is ~X(r) = (x, y, 0)+ [ux(r), uy(r), h(r)].
To lowest order in gradients of the deformations the
strain tensor appearing in Eq. (1) is

uij =
1

2
[∂iuj + ∂jui + (∂ih)(∂jh)], (2)

and owing to the same argument the factor
√
g =

√

1 + |∇h|2 in the measure is neglected. The parame-
ter κ is the bending rigidity and λ and µ are in-plane
elastic constants. Typical parameters for graphene are
κ ≈ 1 eV and µ ≃ 3λ ≈ 9 eVÅ

−2
,12,15,16 with mass den-

sity ρ = 7.6× 10−7 kg/m2.
In the case of bilayer graphene, as long as we are not

at too high T to excite optical phonons we may, from the
elastic point of view, regard bilayer graphene as a thick
membrane with mass density and elastic constants twice
as high as those for single layer.17

The dynamics of the displacement fields is here stud-
ied in the harmonic approximation by introducing the
Fourier series u(r) = V− 1

2

∑

q uqe
iq.r and h(r) =

V− 1
2

∑

q hqe
iq.r, where V is the volume of the system.

A. In-plane phonons

The decoupled in-plane phonon modes are obtained in
the usual way by changing to longitudinal uLq = uq · q/q
and transverse uTq = uq · (êz × q/q) displacement fields.
The dispersion relations have the usual linear behavior
in momentum and are given by

ωL
q = vLq,

ωT
q = vT q, (3)

with vL =
√

2µ+λ
ρ and vT =

√

µ
ρ . Typical values for

monolayer and bilayer graphene are vL ≃ 2.1 × 104 m/s
and vT ≃ 1.4× 104 m/s.

B. Flexural phonons

1. Non-strained case

The quadratic behavior in out-of-plane displacements
of the strain tensor in Eq. (2) implies that FP modes are
driven by the bending rigidity term. The resulting FP
dispersion relation is quadratic,11,18

ωF
q = αq2, (4)

with α =
√

κ
ρ . The typical value is α ≃ 4.6× 10−7 m2/s.

2. Strained case

Suspended samples may be under tension either due
to the load imposed by the back gate or as a result of
the fabrication process, or both. The case of a clamped
graphene membrane hanging over a tranche of size L,
relevant for conventional two-contacts measurements in
suspended samples, has been considered in Ref. 19.

Once the membrane is under tension a static defor-
mation configuration is expected at equilibrium. The
phonon modes may be obtained by assuming that both
in-plane u(r) and flexural h(r) fields have dynamic com-
ponents which add to their static background: u(r) =
ust(r) + udyn(r) and h(r) = hst(r) + hdyn(r). For the
case of the clamped membrane considered in Ref. 19 we
have ust(r) = [ux,st(x), 0] with ux,st(x) a linear function
of x, while hst(x) may be approximated by a parabola.

Let us consider the general static displacement vector
field dst(r) = [ux,st(r), uy,st(r), hst(r)] and the associated
strain tensor uij,st(r) = 1

2 (∂iuj,st + ∂jui,st + ∂ihst∂jhst).
In-plane phonons are not affected by the static compo-
nent but the FP dispersion changes considerably. This is
a consequence of new harmonic terms appearing due to
coupling between in-plane static deformation and out-of-
plane vibrations in the full strain tensor in Eq. (2). The
resulting FP dispersion relation may be obtained using a
local approximation expected to hold for L≫ ℓ = vF τ ≫
k−1
F , where vF is the Fermi velocity, kF the Fermi mo-

mentum, and τ a characteristic collision time. The result
reads

ωF
q (r) = q

√

κ

ρ
q2 + uii,st(r)

λ

ρ
+ uij,st(r)

2µ

ρ

qiqj
q2

. (5)

For the particular case of isotropic strain where uxx =
uyy and uxy = 0 the dispersion relation can be cast in
the form

ωF
q (r) = q

√

κ

ρ
q2 + uii,st(r)

λ + µ

ρ
. (6)

Here we will give particular emphasis to the clamped
membrane case where the FP dispersion is given by

ωF
q = q

√

κ

ρ
q2 + ū

λ+ 2µ

ρ
− ū

2µ

ρ
sin2 φq, (7)

with ū ≡ uxx and φq = arctan(qy/qx). In order to keep
the problem within analytical treatment we will use an
effective isotropic dispersion relation, obtained by drop-
ping the angular dependence contribution,

ωF
q ≃ q

√

α2q2 + ūv2L. (8)

Since we are mainly interested in transport such an ap-
proximation has the advantage that backward scattering
is still correctly accounted for.
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III. ELECTRON-PHONON INTERACTION

A. Low energy description for bilayer graphene

At low energies the 2-band effective model provides a
good approximate description for π−electrons in bilayer
graphene.11 The 2 × 2 Hamiltonian can be cast in the
form Heff =

∑

k ψkHkψk, with

Hk =
~
2

2m

(

0 (kx − iky)
2

(kx + iky)
2 0

)

, (9)

where the two component spinor ψ†
k = [a†k, b

†
k] stems from

the two sublattices not connected by the interlayer hop-
ping, t⊥ ≈ 0.3 eV. The coupling t⊥ between layers sets
the effective mass 2m = t⊥/v

2
F , with vF ≈ 106 m/s the

Fermi velocity in monolayer graphene. Equation (9) is
valid at valley K, at valley K ′ we have Hk → HT

k . Here
we are interested in electron scattering processes induced
by emission or absorption of long wavelength acoustic
phonons and hence intervalley scattering is not allowed.
Thus we may concentrate on one valley only. The Hamil-
tonian can be diagonalized introducing the rotated oper-
ators

dk =
1√
2

(

eiθk e−iθk

eiθk −e−iθk

)

ψk, (10)

where θk = arctan(ky/kx), with d†k = [e†k, h
†
k] defined

such that e†k stands for electron-like (positive energy) ex-
citations and h†k for hole-like (negative energy) excita-
tions, from which we get

H =
∑

k

ε (k) [e†kek − h†khk], (11)

with ε (k) = ~
2k2/(2m).

Along the paper we will compare the results ob-
tained for bilayer graphene with those valid in mono-
layer. The latter is described using the effective Dirac-
like Hamiltonian,11 which holds in the low energy sector
we are interested here.

B. Coupling between electrons and phonons

The coupling between electrons and the vibrations
of the underlying lattice either in bilayer or monolayer
graphene has two main sources. Long wavelength acous-
tic phonons induce an effective local potential called de-
formation potential and proportional to the local con-
traction or dilation of the lattice,11

V1(r) = g0uii(r),

where g0 is the bare deformation potential constant,
whose value is in the range g0 ≈ 20 − 30 eV.20 The re-
spective interaction Hamiltonian is diagonal in sublattice

indices and reads

H1 =
∑

k

ψ†
k [V1(k,k

′)I]ψk′ , (12)

where I is the 2 × 2 identity matrix and V1(k,k
′) is the

Fourier transform of the deformation potential

V1(k,k
′) = V−1g0

ˆ

drei(k
′−k)·ruii (r) . (13)

Equation (12) is valid both for monolayer and bilayer
graphene. Since we are interested in doped systems we
take into account screening by substituting V1(k,k′) with
V1 (k,k

′) /ǫ (k− k′), where we take a Thomas-Fermi like
dielectric function

ǫ (q) = 1 +
e2D (EF )

2ǫ0q
, (14)

and D (EF ) is the density of states at the Fermi energy,
which is given by D (EF ) =

2EF

π~2v2
F

= 2kF

π~vF
in the case of

monolayer graphene and by D (EF ) =
t⊥

π~2v2
F

in the case
of bilayer.

It is convenient to define g ≡ g0/ǫ(kF ) for single layer
graphene, which gives a density independent screened de-
formation potential

g ≈ g0
e2/(πǫ0~vF )

≈ g0
8.75

≈ 2− 3.5 eV. (15)

Note that the value just obtained is in complete agree-
ment with recent ab initio calculations which give g ≈
3 eV.21 It will become clear in Sec. IVC 1 that g as de-
fined in Eq. (15) is the relevant deformation potential
electron-phonon parameter in single layer graphene. For
bilayer graphene g(q) = g0/ǫ(q) gives

g(kF ) ≈
g0

e2t⊥/(2πǫ0~2v2FkF )
≈ g0

11.25

√
n ≈ (2−3)

√
n eV,

(16)
with n in 1012 cm−2. We may then write a q dependent
deformation potential electron-phonon parameter which
has the form gM (q) = gq/kF for monolayer graphene,
and gB(q) = g2~vF q/t⊥ for bilayer.

Phonons can also couple to electrons in monolayer and
bilayer graphene by changes in bond length and bond
angle between carbon atoms. In this case the electron-
phonon interaction can be written as due to an effective
gauge field,22–25

eAelastic =
β

a

[

1
2 (uxx − uyy), −uxy

]

,

where β ≈ −∂ log t/∂ log a ∼ 2− 3,20 with t the in-plane
nearest neighbor hopping parameter and a the carbon-
carbon distance (t0 ≈ 3 eV and a0 ≈ 1.4Å). In the case of
bilayer graphene the resulting interaction Hamiltonian is
obtained by introducing the gauge potential into Eq (9),
following the minimal coupling prescription, and keeping
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only first order terms in electron-phonon coupling. Then
we arrive at

H2 =
~

2m

∑

k,k′

ψ†
k

[

0
(

π−
k + π−

k′

)

A−
k,k′

(

π+
k + π+

k′

)

A+
k,k′ 0

]

ψk′ ,

(17)
where π±

k = ke±iθk , A±
k,k′ = V2,x(k,k

′)± iV2,y(k,k′) and
the vector V2 = (V2,x, V2,y) is defined as

V2,x(k,k
′) =

~β

a
V−1

ˆ

drei(k
′−k)·r 1

2
[uxx(r)− uyy(r)] ,

V2,y(k,k
′) =− ~β

a
V−1

ˆ

drei(k
′−k)·ruxy(r). (18)

An estimate of the electron-phonon coupling strength due
to V2 is given by kF~

2β/(ma) ≈ (8 − 12)
√
n eV, with n

in 1012 cm−2. In the case of single layer graphene the
resulting interaction Hamiltonian reads

H2 = vF
∑

k,k′

ψ†
kσ ·V2(k,k

′)ψk′ , (19)

where σ = (σx, σy) is the vector of Pauli matrices, and
the two component spinor ψ†

k = [a†k, b
†
k] is reminiscent

of the two sublattices of the honeycomb lattice. An esti-
mate of the respective electron-phonon coupling strength
is given by vF ~β/a ≈ 10− 15 eV.

The electron-phonon interaction Hamiltonian is the
sum of the two terms shown above, Hep = H1 + H2.
Phonons enter through the strain tensor uij which we
have seen can be written in terms of static and dynamic
components; the static ones being zero for zero load.
There are purely static terms which do not contribute
to electron-phonon scattering and will be dropped (see
Ref. 19). Quantizing the dynamic part of the displace-
ment fields,26 and introducing usual destruction and cre-
ation operators aνq and (aνq)

† for in-plane phonons q and
polarization ν = L, T , we can write the q component of
the in-plane displacement as,

uL/T
q =

√

~

2ρων
q

[

aL/T
q + (a

L/T
−q )†

]

. (20)

For FPs we introduce the bosonic fields aFq and (aFq )
†,

and write the q component of the out-of-plane displace-
ment as,

hq =

√

~

2ρωF
q

[

aFq + (aF−q)
†
]

. (21)

The electron-phonon interaction Hamiltonian may then
be written either in monolayer or bilayer graphene as,

Hep =
∑

k,k′

(

a†kak′ + b†kbk′

)







∑

ν,q

V ν
1,q

[

aνq + (aν−q)
†
]

δk′,k−q +
∑

q,q′

V F
1,q,q′

[

aFq + (aF−q)
†
] [

aFq′ + (aF−q′)†
]

δk′,k−q−q′







+
∑

k,k′







∑

ν,q

V ν
2,qa

†
kbk′

[

aνq + (aν−q)
†
]

δk′,k−q +
∑

q,q′

V F
2,q,q′a

†
kbk′

[

aFq + (aF−q)
†
] [

aFq′ + (aF−q′)†
]

δk′,k−q−q′ + h.c.







.

(22)

For monolayer graphene the matrix elements read,

V L
1,q =

g0
ǫ(q)

iq

√

~

2VρωL
q

,

V F
1,q,q′ = − g0

ǫ(|q+ q′|)qq
′ cos(φq − φq′)

~

4Vρ
√

ωF
q ω

F
q′

,

V F
1,q =

g0
ǫ(q)

iqi∂ihst

√

~

2VρωF
q

,

V L
2,q =

~vFβ

2a
iqei2φq

√

~

2VρωL
q

,

V T
2,q = −~vFβ

2a
qei2φq

√

~

2VρωT
q

,

V F
2,q,q′ = −~vFβ

4a
qq′ei(φq−φq′) ~

2Vρ
√

ωF
q ω

F
q′

,

V F
2,q =

~vFβ

2a
iq
[

eiφq∂xhst + e−iφq∂yhst
]

√

~

2VρωF
q

,(23)

with V T
1,q = 0 (see also Refs. 7,18), and where we have

again used the local approximation. In the case of bi-
layer graphene only the matrix elements for the gauge
potential change, becoming dependent on fermionic mo-
menta k and k′. As can be seen by comparing Eqs. (17)
and (19), they take exactly the same form as in Eq. (23)
with the replacement vF → ~(πk + πk′)/(2m).

IV. TEMPERATURE DEPENDENT

RESISTIVITY

Our aim here is to study the T dependent resistivity
in suspended bilayer graphene as a result of the electron-
phonon interaction derived above. We assume the doped
regime EF ≫ ~/τ , where 1/τ is the characteristic elec-
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tronic scattering rate (due to phonons, disorder, etc).
The doped regime immediately implies k−1

F ≪ vF τ ≡ l,
where l is the characteristic mean-free path, thus justify-
ing the use of Boltzmann transport theory (even though
graphene’s quasiparticles are chiral the semiclassical ap-
proach still holds away from the Dirac point27,28).

A. The variational approach

The Boltzmann equation is an integro-deferential equa-
tion for the steady state probability distribution fk.29 It
can be generally written as

ṙ · ∇rfk + k̇ · ∇kfk = ḟk
∣

∣

scatt
, (24)

where the terms on the left hand side are due to, respec-
tively, diffusion and external fields, while on the right
hand side scattering provides the required balance at the
steady state. (See Appendix A for an explicit form of
ḟk
∣

∣

scatt
in the case under study.) The Boltzmann equa-

tion is quite intractable in practice, and its linearized
version is used instead,

ṙ · ∇rf
(0)
k + k̇ · ∇kf

(0)
k = δḟk

∣

∣

scatt
, (25)

where δḟk
∣

∣

scatt
is the linearized collision integral. (See

Appendix B for an explicit form of δḟk
∣

∣

scatt
in the

case under study.) Expanding the distribution proba-
bility around its equilibrium value f (0)

k = 1/{exp[(εk −
µ)/kBT ] + 1},

fk = f
(0)
k − ∂f

(0)
k

∂εk
Φk, (26)

and using the equilibrium property that ḟ (0)
k

∣

∣

scatt
= 0, it

can be seen that δḟk
∣

∣

scatt
is linear in Φk, and that it can

be written as a linear application in terms of the linear
scattering operator Pk,

δḟk
∣

∣

scatt
= PkΦk ≡
≡ −

∑

k1,...,kn

Pk,k1,...,kn
(Φk ± Φk1 · · · ± Φkn

) ,

(27)

where Pk,k1,...,kn
is a generalized transition rate per

unit energy.29 (See Appendix B for an explicit form of
Pk,k1,...,kn

in the case under study.) Writing the lin-
earized Boltzmann equation, Eq. (25), in the form

Xk = PkΦk,

and defining the inner products,

〈Φ, X〉 =
∑

k

Φk

(

ṙ · ∇rf
(0)
k + k̇ · ∇kf

(0)
k

)

, (28)

and

〈Φ, PΦ〉 =
∑

k,k1,...,kn

ΦkPk,k1,...,kn
(Φk ± Φk1 · · · ± Φkn

)

=
1

(n+ 1)

∑

k,k1,...,kn

(Φk ± Φk1 · · · ± Φkn
)
2 Pk,k1,...,kn

,

(29)

the variational principle asserts that of all functions
Φk satisfying 〈Φ, X〉 = 〈Φ, PΦ〉, the solution of the
linearized Boltzmann equation gives to the quantity
〈Φ, PΦ〉 /{〈Φ, X〉}2 its minimum value.29 In particular,
the resistivity ̺ can be written as

̺ =
1

gd

〈Φ, PΦ〉
{
〈

Φ, X(E = 1,∇rf (0) = 0)
〉

}2 , (30)

being thus expected to be a minimum for the right
solution,29 where gd is the system’s degeneracy (for
monolayer and bilayer graphene it is gd = gsgv = 4
due to spin and valley degeneracies). The quantity
X(E = 1,∇rf

(0) = 0) refers to the left hand side of
Eq. (25) in a unit electric field and no spatial gradients
(for example, zero temperature gradient). It is easy to
show that 〈Φ, X〉 = E · J, where

J =
∑

k

evkΦk

∂f
(0)
k

∂εk

is the current per non-degenerate mode (per spin and
valley in monolayer and bilayer graphene). The quan-
tity {

〈

Φ, X(E = 1,∇rf
(0) = 0)

〉

}2 is therefore nothing
but Vj2, where j = J/V is the current density.

A well known solution to the Boltzmann equation ex-
ists when scattering is elastic, the Fermi surface isotropic,
and the transition rate can be written as Pk,k′ =
P(k, θk,k′), where θk,k′ = θk− θk′ is the angle between k

and k′.29 Under these conditions the solution reads,

Φk = vk ·
(

eE− εk
T
∇T
)

τ(k),

where τ(k) is the isotropic scattering rate, and we have
written ∇rf

(0)
k = ∂f

(0)
k /∂εk∇T . Clearly, the later solu-

tion for Φk can be cast in the form Φk ∝ k ·u,29,30 where
u is a unit vector in the direction of the applied fields.
So, in more complicated cases where there is a departure
from the isotropic conditions and/or from elastic scat-
tering, it is a good starting point to use Eq. (30) with
Φk ∝ k · u to get an approximate (from above) result
for the resistivity. Note that the coefficient multiplying
k · u is unimportant as it cancels out. This variational
method is equivalent to a linear response Kubo-Nakano-
Mori approach with the perturbation inducing scattering
treated in the Born approximation.31

Here we use the variational method just outlined to
get the T dependent resistivity in bilayer graphene (and
monolayer for comparison) due to scattering by acoustic
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phonons. In this case, using the quasi-elastic approxima-
tion (see Appendix B), δḟk

∣

∣

scatt
can indeed be cast in the

form of Eq. (27),

δḟk
∣

∣

scatt
= −

∑

k′

Pk,k′ (Φk − Φk′) , (31)

where for scattering by one in-plane phonon

Pk,k′ =
2π

~

∑

q,ν

wν(q,k,k
′)ων

q

∂nq

∂ων
q

∂f
(0)
k

∂εk
δk,k′+qδ(εk−εk′),

(32)
and for scattering by two FPs

Pk,k′ = −2π

~2
kBT

∂f
(0)
k

∂εk

∑

q,q′

wF (q,q
′,k,k′)

∂nq

∂ωF
q

∂nq′

∂ωF
q′

×

×
(

ωF
q + ωF

q′

1 + nq + nq′

−
ωF
q − ωF

q′

nq − nq′

)

δk,k′+q+q′δ(εk − εk′),

(33)

with nq = 1/[exp(~ωq/kBT )−1] the equilibrium phonon
distribution. The kernel quantities wν(q,k,k

′) and
wF (q,q

′,k,k′) are related to the matrix elements in
Eq. (23) as follows (see Appendix A): for bilayer
graphene,

wν(q,k,k
′) ≈

∣

∣V ν
1,q

∣

∣

2
(1 + cos 2θk,k′)

+
∣

∣

∣Ṽ ν
2,q

∣

∣

∣

2
(

k2 + k′2 + 2kk′ cos θk,k′

)

, (34)

for one phonon processes, and a similar expression for
two phonon processes wF (q,q

′,k,k′) with V ν
q → V F

q,q′ ,
where Ṽ2 means the matrix elements given in Eq. (23)
for the gauge potential without the term (πk + πk′); for
monolayer graphene, in the case of one phonon process,

wν(q,k,k
′) ≈

∣

∣V ν
1,q

∣

∣

2
(1 + cos θk,k′) +

∣

∣V ν
2,q

∣

∣

2
, (35)

with a similar expression for two phonon processes
wF (q,q

′,k,k′) with V ν
q → V F

q,q′ .
Using the setting given above the resistivity is conve-

niently written as

̺ =
1

gsgv

1
2

∑

k,k′ (Φk − Φk′)
2 Pk,k′

V
∣

∣

∣

∣

e
V

∑

kΦkvk
∂f

(0)
k

∂εk

∣

∣

∣

∣

2

≈ V
8e2

´

dkdk′ (K · u)2 Pk,k′

∣

∣

∣

∣

´

dkk · uvk
∂f

(0)
k

∂εk

∣

∣

∣

∣

2 , (36)

where we changed from summation over k−space to
integration, and defined K = k − k′. The integral
in the denominator can be done immediately assuming
εF ≫ kBT . The result reads the same for bilayer and
monolayer graphene,

∣

∣

∣

∣

∣

ˆ

dkk · uvk

∂f
(0)
k

∂εk

∣

∣

∣

∣

∣

≈ πk2F
~
. (37)

In order to proceed analytically with the integral in the
numerator we have to specify the T regime, as discussed
in the next section.

B. Bloch -Grüneisen temperature

For each scattering process (one or two phonon scat-
tering) we may identify two different T regimes, low and
high T , related to whether only small angle or every an-
gle are available to scatter from

∣

∣k
〉

to
∣

∣k′
〉

. Recall that
since we are dealing with quasielastic scattering both k

and k′ sit on the Fermi circle, see Fig. 1, and
∣

∣k
〉

and
∣

∣k′
〉

are adiabatically connected through a rotation of θk,k′ in
momentum space. Large angle scattering is only possi-
ble if phonons with high enough momentum are available
to scatter electrons. The characteristic Bloch-Grüneisen
temperature TBG separating the two regimes may thus
be set by the minimum phonon energy necessary to have
full back scattering,

kBTBG = ~ω2kF
, (38)

with ωq as given in Sec. II.
For scattering by in-plane phonons TBG takes the value

T
(L)
BG ≈ 57

√
nK and T

(T )
BG ≈ 38

√
nK, (39)

for longitudinal and transverse phonons respectively,
with density n in units of 1012 cm−2. When scattering
is by two non-strained FPs, the crossover between low
and high T regimes is given by

TBG ≈ 0.1nK, (40)

with n again measured in 1012 cm−2, while in the pres-
ence of strain, using the approximated strained FP dis-
persion in Eq. (8), we get

TBG ≃ 28
√
nū K. (41)

It is obvious from Eqs. (40) and (41) that the high-T
regime is the relevant one for FP scattering.

C. Contributions to resistivity

In the following we summarize our results for the T de-
pendent resistivity due to scattering by in-plane phonons
and two FPs in bilayer graphene. For comparison we dis-
cuss also the monolayer case first studied in Ref. 7. We
use the variational method discussed in Sec. IVA; the re-
sistivity being given by Eq. (36). Details on the deriva-
tion can be found in Appendix C. We neglect one FP
processes since these, as can be seen in Eq. (23), are re-
duced by a factor ∼ h0/L≪ 1, where h0 is the sample’s
vertical deflection over the typical linear size L.
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Figure 1: Scattering of electrons in momentum space due
to: (a) in-plane phonons, (b) non-strained flexural and
(c) strained flexural phonons.

1. Scattering by in-plane phonons

A sketch of the scattering process in momentum space
involving one phonon is shown in Fig. 1(a). In this case
the resistivity can be written as (see Appendix C 1),

̺in ≈ 8~k2F
e2ρv2F kBT

∑

ν

ˆ 1

0

dx [Dν
B(2x)]

2 x4√
1− x2

exzν

(exzν − 1)2
,

(42)
where zν = ~ων

2kF
/kBT , with ν = L, T , and where we

have introduced a generalized electron–in-plane phonon
coupling for bilayer graphene given by,

Dν
B(y) =

[

2g2y2
(

1− y2

2

)2

δνL +
~
2v2Fβ

2

4a2

(

1− y2

4

)

]1/2

.

(43)
The case of scattering via screened scalar potential, here
encoded in the screened deformation potential parame-
ter g, has been considered recently in Ref. 32. As it is
shown below, the gauge potential contribution becomes
the dominant one in the low T regime.

In the low T regime, T ≪ TBG, we have zν ≫ 1, so that
the integrand in Eq. (42) is only contributing significantly
for x ≪ 1. The generalized electron–in-plane phonon
coupling in (43) then becomes,

Dν
B(y ≪ 1) =

[

2g2y2δνL +
~
2v2Fβ

2

4a2

]1/2

, (44)

and the resistivity reads,

̺in ≈
∑

ν

[

g2
16Γ(6)ζ(6)

Γ(4)ζ(4)

(

T

TBG

)2

δνL +
~
2v2Fβ

2

4a2

]

×

Γ(4)ζ(4)(kBT )
4

e2ρ~4v2F v
5
νk

3
F

, (45)

where Γ(n) = (n − 1)! is the gamma function and ζ(n)
is the Riemann zeta function. We have thus obtained
the expected T 4 behavior at low T for coupling through
gauge potential, which is the 2–dimensional analogue of
the T 5 Bloch theory in 3–dimensional metals.29,33 The
scalar potential contribution comes proportional to T 6

due to screening. It can be neglected in the low T regime;
even though 16Γ(6)ζ(6)/[Γ(4)ζ(4)] ≈ 300, it is strongly
suppressed by T/TBG ≪ 1 and g < ~vFβ/(2a), (see
Sec. III B).

In the high T regime, T ≫ TBG, the inequality zν ≪ 1
holds, so that ezνx/(ezνx−1)2 ≈ 1/(zνx) in Eq. (42). The
usual linear in T resistivity for one phonon scattering is
then recovered,

̺in ≈
(

7g2 +
~
2v2Fβ

2

8a2
v2L
v̄2

)

πkBT

4~ρe2v2Lv
2
F

, (46)

where 1/v̄2 = 1/v2L + 1/v2T . Note that, at odds with
the low T regime, now the scalar potential contribution
is higher than the gauge potential one for the typical
coupling values discussed in Sec. III B.

The monolayer case has been discussed extensively in
the literature.6,7,18,33,34 The resistivity is still given by
Eq. (42), only the generalized electron–in-plane phonon
coupling changes,

Dν
M (y) =

[

2g2y2
(

1− y2

4

)

δνL +
~
2v2Fβ

2

4a2

]1/2

. (47)

The same qualitative behavior is obtained: at low T the
resistivity is given by Eq. (45) with the numerical re-
placement 16 → 12 in the scalar potential contribution;
at high T the result (46) holds with the replacement
(

7g2 +
~
2v2

F β2

8a2

v2
L

v̄2

)

→
(

2g2 +
~
2v2

Fβ2

2a2

v2
L

v̄2

)

. Note, how-
ever, the apparent quantitative difference: the scalar and
gauge potential contributions change roles, the later be-
coming more important in monolayer graphene. This is
further discussed in Sec. V.

A final remark regarding the temperature dependent
resistivity due to in-plane phonons has to do with the
value of the electron-phonon coupling parameters β and
g. While β is expected to be restricted to the range
β ∼ 2 − 3, as discussed in Sec. III B, the value of the
deformation potential parameter g is still debated in the
literature. Phenomenology gives g ∼ 10− 30 eV;20,33 re-
cent ab initio calculations provide a much smaller value
g ∼ 3 eV.21 On the other hand, experiments seem to
confirm the higher values, giving g ∼ 15 − 25 eV.35,36

Our claim here is that all these values make sense, if
properly interpreted: phenomenology gives essentially
unscreened deformation potential, which we called g0 in
Sec. III B, and which should take values of O(10) eV;
screening effects suppress the deformation potential to
O(1) eV, as we have seen in Sec. III B within the Thomas
Fermi approximation, in good agreement with ab initio

results where screening is built in; the fact that trans-
port experiments give a much higher deformation poten-
tial is a strong indication that phonon scattering through
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Figure 2: Resistivity vs T due to scattering by in-plane
phonons (dashed thick lines) and flexural phonons (full lines)
with and without strain (indicated in percentage), in mono-
layer (a) and bilayer graphene (b). We use n = 1012 cm−2,
g ≈ 3 eV, and β ≈ 3.

gauge potential, usually not included when fitting the
data,35,36 is at work. Indeed, using the monolayer ver-
sion of Eq. (46), we readily find that the fitting quantity
in Refs. 35 and 36 should be replaced by,

D̃ =

[

2g2 +
v2F~

2β2

2a2

(

1 +
v2L
v2T

)]1/2

, (48)

which, keeping g ∼ 3 eV, takes values D̃ ∼ 10 − 20 eV
for β ∼ 2 − 3, in excellent agreement with experiments.
Moreover, since the gauge potential is not screened
[Eq. (45)] it provides a natural explanation for the T 4

resistivity behavior recently reported at low T in Ref. 36,
where the expected T 6 contribution due to scalar poten-
tial is absent.32

Typical T dependent resistivity due to scattering by
in-plane phonons, Eq. (42), is shown in Fig. 2 as thick
dashed lines. In agreement with analytical results, there
is no qualitative difference between monolayer graphene
[Fig. 2(a)] and bilayer [Fig. 2(b)].

2. Scattering by non-strained flexural phonons

In non-strained bilayer graphene scattering by FPs give
rise to the following T dependent resistivity (details on
the derivation are given in Appendix C 2),

̺F ≈ ~k2F
2πe2ρ2v2Fα

2
ln

(

kBT

~αq2c

)
ˆ 1

0

dx
[DF

B(2x)]
2

√
1− x2

x4ezx
2

(ezx2 − 1)2
,

(49)
where z = ~ωF

2kF
/kBT , and where the generalized

electron–FP coupling for bilayer graphene is given by,

DF
B(x) =

[

g2x2
(

1− x2

2

)2

+
~
2v2Fβ

2

4a2

(

1− x2

4

)

]1/2

.

(50)
Equation (49) holds also for monolayer graphene, we need
only to introduce a different generalized electron-FP cou-

pling,

DM (x) =

[

g2x2
(

1− x2

4

)

+
~
2v2Fβ

2

4a2

]1/2

. (51)

In Fig. 1(b) a sketch of the two phonon scattering pro-
cess in momentum space is provided. It shows that one
of the two phonons involved in the scattering event al-
ways has momentum q′ → 0. This is a consequence
of the quadratic FP dispersion [Eq. (4)], which leads to
a divergent number of FPs with momentum q′ → 0.11

This divergence is responsible for the logarithmic factor
in Eq. (49), which stems from the existence of an infrared
cutoff qc. This cutoff is to be identified with the onset of
anharmonic effects,37 or unavoidable built in strain.6

In the low T regime, T ≪ TBG, one has z ≫ 1, so that
the integrand in Eq. (49) is only contributing for x≪ 1.
The generalized electron-phonon coupling becomes equal
in both bilayer and monolayer systems,

DB(y ≪ 1) = DM (y ≪ 1) =

[

g2y2 +
~
2v2Fβ

2

4a2

]1/2

,

(52)
and the resistivity is then the same in both,

̺F ≈
[

g2
6Γ(6)ζ(6)

Γ(4)ζ(4)

(

T

TBG

)2

+
~
2v2Fβ

2

4a2

]

×

Γ(4)ζ(4)~k2F
24πe2ρ2v2Fα

2

(

kBT

~αk2F

)5/2

ln

(

kBT

~αq2c

)

. (53)

A similar result has been derived in Ref. 18. Owing to
the same arguments used in the previous section for one
phonon scattering we can neglect the scalar potential con-
tribution at low T .

At high T , i.e. T ≫ TBG, we have z ≪ 1, so that
exp(zx2)/[exp(zx2) − 1]2 ≈ 1/(zx2) in Eq. (49). The
bilayer graphene resistivity becomes,

̺F ≈
(

g2 +
~
2v2Fβ

2

8a2

)

(kBT )
2

64~e2ρ2v2Fα
4k2F

ln

(

kBT

~αq2c

)

.

(54)
This result holds for monolayer graphene with the sub-
stitution

(

g2 +
~
2v2

F β2

8a2

)

→
(

g2

2 +
~
2v2

F β2

4a2

)

.6,7 We have
obtained that the resistivity due to non-strained FPs
is proportional to T 2/n, which implies mobility inde-
pendent of the carrier density n. A similar result has
been obtained in the context of microscopic ripples in
graphene.5,24 The result of Eq. (54) is shown in Fig. 2(b)
as a full line indicating ū ≈ 0%. The logarithmic cor-
rection, expected to be of order unity in the relevant T
range, has been ignored. Scattering by FPs dominates
the contribution to resistivity in non-strained samples
at both low and high T , except for the crossover region
where T ∼ TBG, Eq. (39). The same conclusion holds for
monolayer graphene, whose T dependent ̺F is shown in
Fig. 2(a).
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3. Scattering by strained flexural phonons

Applying strain breaks the membrane rotational sym-
metry inducing linear FP dispersion at low momentum,
as can be seen in Eq. (8). A new energy scale appears in
the problem,

ωF
q∗ =

√
2ūv2L/α ≈ 104ū(K), (55)

separating two regimes: linear dispersion below and
quadratic dispersion above. The associated momentum
scale, q∗ =

√
ūvL/α ≈ 4.5

√
ū Å

−1
, together with kF and

the thermal momentum qT given by ~ωF
qT = kBT , define

all regimes where analytic treatment can be employed.
In particular, in the low T regime where qT ≪ kF we

may always take q∗ ≫ qT and use a linear dispersion
for FPs; otherwise the non strained case considered in
the previous section would be the appropriate starting
point. In the high T regime we can distinguish between
low strain for q∗ ≪ qT and high strain for q∗ ≫ qT . Note
that at high T relevant phonons scattering electrons have
momentum q in the range kF . q . qT . Therefore, when
strain is present in the high T regime we may always
assume q∗ ≫ kF ; the opposite limit, q∗ ≪ kF , would
again be identified with the non-strained case considered
previously.

The resistivity due to strained FPs can be cast in the
form of a triple integral over rescaled momenta x→ x̃ =
x~vLu

1/2/(kBT ) (see Appendix C 2 for details),

̺F ≈ (kBT )
6

26π2~5e2ρ2v2F v
8
Lū

4k2F

ˆ 2k̃F

0

dK̃
[DF

B(K̃/k̃F )]
2K̃2

√

k̃2F − K̃2/4

ˆ ∞

0

dq̃
q̃3

ωq̃
nq̃(nq̃ + 1)×

ˆ |K̃+q̃|

|K̃−q̃|

dQ̃
Q̃3nQ̃(nQ̃ + 1)

ωQ̃

√

q̃2K̃2 −
(

K̃2 + q̃2 − Q̃2
)2

/4

(

ωq̃ + ωQ̃

1 + nq̃ + nQ̃

−
ωq̃ − ωQ̃

nq̃ − nQ̃

)

, (56)

where the rescaled dispersion reads ωx̃ ≈
√

γ2x̃4 + x̃2,
with γ =

√
2ωF

qT /ω
F
q∗ , and the generalized electron-FP

coupling DF
B(y) is given by Eq. (50). For monolayer

graphene only the coupling changes, being given instead
by Eq. (51). The kinematics of the scattering process is
schematically shown in Fig. 1(c).

In the low T case, T ≪ TBG, we have only small angle
scattering with K ≪ kF . The argument of the gener-
alized electron-FP coupling becomes small, K/kF ≪ 1,
and it can be written as

DB(y ≪ 1) ≈ DM (y ≪ 1) ≈
[

g2y2 +
~
2v2Fβ

2

4a2

]1/2

.

(57)
The resistivity is the same in both bilayer and monolayer
systems. Since the inequality qT ≪ kF , q

∗ holds, rele-
vant phonons have linear dispersion ωF

q ≈
√
ūvLq and

the rescaled Fermi momentum obeys k̃F ≈ kF /qT ≫ 1.
We may take K̃ → ∞ as the upper limit in the K̃ integral
in Eq. (56), and the resistivity is then approximated by,

̺F ≈
[

g2
(

qT
kF

)2

K4 +
~
2v2Fβ

2

4a2
K2

]

(kBT )
7

26π2~6e2ρ2v2F v
9
Lū

9/2k3F
,

(58)

where

Kn =

ˆ ∞

0

dK̃K̃n

ˆ ∞

0

dq̃ q2nq̃(nq̃ + 1)×

ˆ |K̃+q̃|

|K̃−q̃|

dQ̃
Q̃2nQ̃(nQ̃ + 1)

(

q̃+Q̃
1+nq̃+nQ̃

− q̃−Q̃
nq̃−nQ̃

)

√

q̃2K̃2 −
(

K̃2 + q̃2 − Q̃2
)2

/4

. (59)

It can be shown numerically that K2 ≈ 4485 and K4 ≈
496850. The large ratio K4/K2 ≫ 1 is, however, com-
pensated by qT /kF ≪ 1 and the fact that g < ~vFβ/(2a)
(see Sec. III B). As in the case of scattering by in-plane
phonons, also here the gauge potential contribution to
resistivity dominates at low T .

Now we consider the high T regime, T ≫ TBG. At
odds with the non-strained case [see Fig. 1(b)], now
phonons with momentum q in the range kF . q . qT pro-
vide most of the scattering. It is shown in Appendix C 2 b
that the integral over Q̃ in Eq. (56) becomes K̃ indepen-
dent, and the q̃ integral can be cast in the form,

G(γ) =
ˆ ∞

0

dq̃
q̃5n2

q̃(nq̃ + 1)2

γ2q̃4 + q̃2

(

2
√

γ2q̃4 + q̃2

1 + 2nq̃
+

1

nq̃(nq̃ + 1)

)

,

(60)
being easily evaluated numerically. The resistivity in bi-
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layer graphene can then be written as

̺F ≈
(

7g2 +
~
2v2Fβ

2

4a2

)

(kBT )
4

27~3e2ρ2v2F v
6
Lū

3
G
(

αkBT

~ūv2L

)

.

(61)
When γ ≪ 1, or equivalently qT ≪ q∗ (high strain), the
function G(γ) behaves as G(γ ≪ 1) ≈ 18ζ(3)− 93ζ(5)/8.
For γ ≫ 1, or equivalently qT ≫ q∗ (small strain), it
gives G(γ ≫ 1) ≈ 1/γ2. In these asymptotic regimes
one can obtain analytic expressions for the resistivity in
Eq. (61),

̺F ≈
(

7g2 +
~
2v2Fβ

2

4a2

)

1

27~3e2v2F
×







(

18ζ(3)− 93
8 ζ(5)

) (kBT )4

ρ2v6
L
ū3 kF ≪ qT ≪ q∗

~
2(kBT )2

ρκv2
L
ū

kF ≪ q∗ ≪ qT
. (62)

Equations (61) and (62) also hold for monolayer graphene

with
(

7g2 +
~
2v2

Fβ2

4a2

)

→
(

2g2 +
~
2v2

F β2

a2

)

.

The effect of strain in the T dependence of resis-
tivity is shown in Fig. 2(a) for monolayer graphene
and 2(b) for bilayer at strain values ū ≈ 0.1%, 0.5%, 1%.
The crossover between the two regimes of Eq. (61) [see
Eq. (62)] is clearly seen at γ ≈ 1, which is equivalent to
T ≈ 104ū K. It is apparent from Fig. 2 that the con-
tribution to the resistivity due to scattering by FPs is
strongly suppressed by applying strain.

D. Crossover between in-plane and flexural phonon

dominated scattering

Scattering by in-plane and flexural phonons are always
at work simultaneously. However, the two mechanisms
provide completely different T dependent resistivity, and
therefore we expect them to dominate at different T . In
the following we address the transition T at which ̺in ≈
̺F .

1. Non-strained case

In this case, using Eqs. (46) and (54) for bilayer
graphene in the high T regime we get

̺F
̺in

≈ T [K]

75n[cm−2]
, (63)

We expect a crossover between in-plane to FP dominated
scattering given by

Tc2 ≈ 75n[cm−2] K. (64)

The Tc just obtained is close to TBG for in-plane phonons,
Eq. (39), and much higher than TBG for FPs, Eq. (40).

Using the low T approximation for ̺in, Eq. (45), we ob-
tain the ratio

̺F
̺in

≈ 12

√

n[cm−2]

(T [K])2
, (65)

from which we expect a crossover from FP to in-plane
dominated scattering at

Tc1 ≈ 3(n[cm−2])1/4 K, (66)

as T increases. We conclude that scattering by FP al-
ways dominates over scattering by in-plane ones, except
for the region Tc1 ≪ T ≪ Tc2 around TBG for in-plane
phonons, Eq. (39). This is clearly seen in Fig. 2(b).
The same conclusion applies to monolayer graphene. In
this later case we obtain Tc1 ≈ 6(n[cm−2])1/4 K and
Tc2 ≈ 55n[cm−2] K.

2. Strained case

It can easily be shown that the crossover from in-plane
to flexural phonon dominated scattering always occurs
in the low strain regime, q∗ ≪ qT . We have seen in
the previous sections that the crossover temperature T
separating high strain from low strain behavior is given
by γ =

√
2ωF

qT /ω
F
q∗ ≈ 1. Using Eq. (55) we get a crossover

temperature T ∗ ≈ 104ūK. On the other hand, using
the low strain approximation for the resistivity due to
flexural phonons given in Eq. (62) and the resistivity due
to in-plane ones in Eq. (46) we obtain for the ratio in
bilayer graphene

̺F
̺in

≈ kBT

40πκū
. (67)

The corresponding crossover T then reads

Tc ≈ 106ūK. (68)

Clearly Tc ≫ T ∗, justifying our low strain approxima-
tion. The same applies to monolayer graphene under
strain. The resistivity ratio is in that case ̺F /̺in ≈
kBT/(50πκū), from which we obtain roughly the same
Tc even taken into account that κ in monolayer is half
that of bilayer in our elasticity model.

In important conclusion may be drawn. While in the
non-strained case scattering by FP is the dominant con-
tribution to the resistivity, it can be seen from Eq. (68)
that applying small amounts of strain is enough to sup-
press this contribution at room T . This is clearly seen in
Fig. 2.

V. DISCUSSION

We have found the T dependent resistivity due to
acoustic phonons to be qualitatively similar in monolayer
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and bilayer graphene (see Sec. IVC). This becomes ap-
parent when we compare Fig. 2(a) and 2(b) where ̺(T ) is
shown, respectively, for monolayer and bilayer graphene
both at zero and finite strain. Such behavior can be
traced back to the resistivity expression, Eq. (36), or
more precisely to its numerator, where the different elec-
tronic structure and electron-phonon coupling conspire to
give exactly the same parametric dependence in mono-
layer and bilayer graphene. In short, it can be read-
ily seen through Eq. (36) that the information about
the electronic structure enters via the density of states
squared in the numerator. The electron-phonon cou-
pling, in its turn, enters through the transition rate Pk,k′,
and in the Born approximation it also appears squared.
When coupling is via scalar potential [V1 matrix elements
in Eq. (23)] the screening makes the coupling inversely
proportional to the density of states, and the square of
it cancels exactly with the square density of states com-
ing from the integral over k and k′ in the numerator of
Eq. (36). For the coupling through gauge potential [V2
matrix elements in Eq. (23)] the parametric difference
between monolayer and bilayer amounts to the replace-
ment v2F → ~

2k2F /(2m)2 (after taking the square of the
matrix elements and using the quasielastic approxima-
tion). When multiplied by the square of the density of
states in bilayer graphene, D(E) ∼ m/~2, we obtain the
factor k2F /~

2, which has exactly the same parametric de-
pendence appearing for single layer graphene – there, the
factor v2F multiplies the square of the density of states of
the monolayer, D(E) ∼ k/(~vF ).

Despite qualitative similarities there are apparent
quantitative differences. A striking one is the overall
suppression of resistivity in bilayer graphene, which is
clearly seen when we compare Fig. 2(a) and 2(b). This
is due to the higher stiffness and mass density of bilayer
graphene (see Sec. II), and to the 1/2 term in Eq. (17)
for the gauge potential which, at odds with the paramet-
ric dependence just discussed, does not cancel out in the
expression for the resistivity. Also, the scalar potential
contribution is quantitative different, being enhanced in
bilayer graphene, as can be seen by comparing Eqs. (45),
and (46), Eqs. (53) and (54), and Eqs. (58) and (61)
with their monolayer counterparts. This arises because
pseudo-spin conservation allows back scattering due to
scalar potential in bilayer but not in monolayer graphene.

The quantitative discrepancy between the T depen-
dent resistivity in bilayer and monolayer graphene origi-
nates an interesting difference regarding room T mobil-
ity in non-strained samples. The mobility µ, defined as
̺ = 1/(enµ), is in the non-strained case limited by PF
scattering (see Sec. IVC 2) and takes the form

µ ≈ A64π~ev2F
k2BT

2
, (69)

with AB = κ2/[g2 + ~
2v2Fβ

2/(8a2)] in bilayer graphene
and AM = κ2/[g2/2 + ~

2v2Fβ
2/(4a2)] in monolayer

graphene, ignoring the logarithmic contribution of or-
der unity, Eq. (54). For monolayer graphene at room

T the mobility is limited to the value for samples on sub-
strate, µ ≈ 198AM ∼ 1 m2/Vs, as has recently been con-
firmed experimentally.6 For bilayer graphene, however,
the quantitative differences discussed above lead to an en-
hanced room T mobility, µ ≈ 198AB ∼ 20 m2/Vs. This
might be an interesting aspect to take into account re-
garding room T electronic applications. Reports of much
smaller mobility (one order of magnitude) in recent ex-
periments in suspended bilayer graphene1 might be an
indication that residual, T independent scattering is at
work, overcoming the intrinsic FP contribution.

Another remark worth discussion is the validity of re-
sults in the non-strained regime, in particular Eq. (54)
for the high T resistivity. At low densities, when kF be-
comes comparable with the infrared cutoff qc given by
the onset of anharmonic effects,37 the harmonic approxi-
mation used here breaks down. A complete theory would
require taking into account anharmonicities, but this is
beyond the scope of the present work. Nevertheless, it is
likely that unavoidable little strain u is always present in
real samples,6 and this increases the validity of the har-
monic approximation.38 Moreover, the infrared cutoff qc
due to anharmonic effects depends on the applied strain
(see Appendix D), decreasing as strain increases. This
is consistent with sample to sample mobility differences
of order unity recently reported in suspended monolayer
graphene,6 where strain u . 10−4 − 10−3 is naturally
expected.

Finally, we comment on a recent theory paper by Mar-
iani and von Oppen7 where the T dependent resistivity
of monolayer graphene has been fully discussed. In the
high T regime, T ≫ TBG, our results for the monolayer
case agree with those of Ref. 7. However, at low T , i.e.
T ≪ TBG, the authors of Ref. 7 found a new regime
where the scalar potential contribution dominates. This
happens because in Ref. 7 the electron-phonon coupling
from scalar potential is assumed to be much higher than
the gauge potential coupling, unless T ≪ TGD, where
TGD is the energy scale at which screening becomes rel-
evant and scalar and gauge potentials become compara-
ble. The new regime arises for TGD ≪ T ≪ TBG. With
the parameter values used in the present work, however,
the electron-phonon coupling due to scalar potential is
always similar or smaller than the gauge potential (see
Sec. III B). Therefore, we can neglect this low T con-
tribution since it gives higher power law behavior than
the gauge potential. Recent T dependent resistivity due
to in-plane phonons measured in single layer graphene at
the high densities36 seem to corroborate the latter pic-
ture.

VI. CONCLUSIONS

In the present work we have studied the T dependent
resistivity due to scattering by both acoustic in-plane
phonons and FPs in doped, suspended bilayer graphene.
We have found the bilayer membrane to follow the quali-
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tative behavior of the monolayer cousin.6,7 Different elec-
tronic structure combine with different electron-phonon
coupling to give the same parametric dependence in re-
sistivity, and in particular the same T behavior. In paral-
lel with the single layer, FPs dominate the phonon con-
tribution to resistivity in the absence of strain, where
a density independent mobility is obtained. This con-
tribution is strongly suppressed by tension, similarly to
monolayer graphene.6 However, an interesting quantita-
tive difference with respect to suspended monolayer has
been found. In the latter, as shown in Ref. 6, FPs limit
room T mobility µ to values obtained for samples on sub-
strate, µ ∼ 1 m2/(Vs), when tension is absent. In bilayer,
quantitative differences in electron-phonon coupling and
elastic constants lead to a room T mobility enhanced by
one order of magnitude, µ ∼ 20 m2/(Vs), even in non-
strained samples. This finding has obvious advantages for
room T electronic applications. It has also been shown
that for a correct description of acoustic phonon scat-
tering in both monolayer and bilayer graphene, even at
the qualitative level, coupling to both scalar and gauge
potentials needs to be taken into account.
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Appendix A: Collision integral

The rate of change of fk due to scattering, the so-
called collision integral ḟk

∣

∣

scatt
appearing on the right

hand side of the Boltzmann equation Eq. (24), is the
difference between the rate at which quasiparticles enter
the state

∣

∣k
〉

and the rate at which they leave it,

ḟk
∣

∣

scatt
=
∑

k′

[

fk′(1− fk)Wk
k′ − fk(1 − fk′)Wk′

k

]

,

(A1)
where Wf

i is the scattering probability between state
∣

∣i
〉

and
∣

∣f
〉

. Here we use Fermi’s golden rule, which reads

Wf
i =

2π

~

∣

∣

∣

〈

f
∣

∣Hint

∣

∣i
〉

∣

∣

∣

2

δ(Ef − Ei), (A2)

and is equivalent to rest upon the Born approximation for
the differential scattering cross-section. In this appendix
we provide explicit expressions for the integral collision
Eq. (A1) arising due to scattering by phonons in bilayer
graphene (and also monolayer for comparison).

The crucial step to get ḟk
∣

∣

scatt
is finding the scat-

tering probability for a quasi-particle in state |k〉 to
be scattered into state |k′〉, i.e. Wk′

k (since the pro-
cess is quasi-elastic interband transitions are not al-
lowed, meaning that both states belong to the same
band). The scattering mechanism is encoded in the
interaction Hint, which in the present case is given
by Hep in Eq. (22). It is readily seen that scatter-
ing occurs only through emission or absorption of one
phonon or emission/absorption of two phonons. The
initial and final states are thus tensorial products of
the form |i〉 = |k〉 ⊗ |nq〉 or |i〉 = |k〉 ⊗ |nq, nq′〉, and
|f〉 = |k′〉 ⊗ |nq ± 1〉, |f〉 = |k′〉 ⊗ |nq ± 1, nq′ ± 1〉 or
|f〉 = |k′〉 ⊗

∣

∣nq ± 1, nF
q′ ∓ 1

〉

, where |nq〉 and |nq, nq′〉
represent one and two phonon states in the occupation
number representation,18 and the electron like quasipar-
ticle state is written according to the unitary transfor-
mation in Eq. (10) as |k〉 = (e−iθka†k |0〉+ eiθkb†k |0〉)/

√
2

(electron-hole symmetry guarantees the result is the same
for both electron and hole doping).

In order to obtain |〈f |Hep |i〉|2, with |i〉 and |f〉 as
given above, we take the following steps. (i) Terms of the
form V1V2, where V1 stands for scalar potential and V2
for gauge potential induced matrix elements in Eq. (23),
are neglected. It is easy to show that such terms come
proportional to oscillatory factors e±i2θk or e±i2θk′ (in
monolayer graphene e±iθk or e±iθk′ ), stemming from the
unitary transformation in Eq. (10). These terms can
safely be neglected in doing the summation over the di-
rection of k and k′ in the numerator of Eq. (36), keep-
ing θk,k′ fixed. The resistivity is then the sum of two
independent contributions, originating from scalar and
gauge potentials, well in the spirit of Matthiessen’s em-
pirical rule.29 (ii) For the scalar potential contribution
the terms

∣

∣V ν
1,qe

i(θk′−θk) + V ν
1,qe

i(θk′−θk)
∣

∣

2
/4 are propor-

tional to the overlap of states belonging to the same band
(1 + cos 2θk,k′)/2, and can be written as

∣

∣

∣

∣

V ν
1,q

ei(θk′−θk)

2
+ V ν

1,q

e−i(θk′−θk)

2

∣

∣

∣

∣

2

=
∣

∣V ν
1,q

∣

∣

2 1 + cos 2θk,k′

2
.

(A3)
The same manipulation holds for two phonon terms, with
V ν
1,q → V F

1,q,q′ . (iii) For the gauge potential contribution
there are oscillatory terms which, owing to the argument
of point (i), can be neglected,

∣

∣

∣

∣

V ν
2,q,k,k′

ei(θk′+θk)

2
+
(

V ν
2,−q,k,k′

)∗ e−i(θk′+θk)

2

∣

∣

∣

∣

2

≃
∣

∣

∣Ṽ ν
2,q

∣

∣

∣

2
(

k2

2
+
k′2

2
+ kk′ cos θk,k′

)

, (A4)

where we used Ṽ to express the matrix elements given in
Eq. (23) for bilayer graphene without the term (πk+πk′).
A similar manipulation holds for two phonon terms, with
Ṽ ν
2,q → Ṽ F

2,q,q′ .
Finally, summing over phonon momenta and doing the

thermal average, we can write Wk′

k as follows: when scat-
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tering is via one phonon,

Wk′

k =
π

~

∑

q

wν(q,k,k
′)nqδk′,k+qδ(εk′ − εk − ~ων

q)

+
π

~

∑

q

wν(q,k,k
′)(nq + 1)δk′,k−qδ(εk′ − εk + ~ων

q),

(A5)

where the first term is due to absorption and the second
to emission of a single phonon; when scattering involves
two phonons,

Wk′

k =
π

~

∑

q,q′

wF (q,q
′,k,k′)nqnq′×

δk′,k+q+q′δ(εk′ − εk − ~ωF
q − ~ωF

q′)

+
π

~

∑

q,q′

wF (q,q
′,k,k′)(nq + 1)(nq′ + 1)×

δk′,k−q−q′δ(ǫk′ − ǫk + ~ωF
q + ~ωF

q′)

+
2π

~

∑

q,q′

wF (q,q
′,k,k′)(nq + 1)nq′×

δk′,k−q+q′δ(ǫk′ − ǫk + ~ωF
q − ~ωF

q′), (A6)

where the first term is due to absorption of two FPs,
the second to emission of two FPs, and the last one
comes from absorption of a single FP and emission of an-
other one. The kernels wν(q,k,k

′) and wF (q,q
′,k,k′)

represent the sum of the right hand side of Eq. (A3)
with Eq. (A4), as given in Eq. (34). For Monolayer
graphene Wk′

k take exactly the same form;7 only the ker-
nels change, being given instead by Eq. (35). The colli-
sion integral may finally be put in the form,

ḟk
∣

∣

scatt
=
π

~

∑

k′

∑

q,ν

wν(q,k,k
′)×

×{[fk′(1− fk)nq − fk(1− fk′)(nq + 1)]

δk,k′+qδ(εk − εk′ − ~ων
q)

+ [fk′(1− fk)(nq + 1)− fk(1− fk′)nq]

δk,k′−qδ(εk − εk′ + ~ων
q)
}

, (A7)

for one phonon scattering processes, and

ḟk
∣

∣

scatt
=
π

~

∑

k′

∑

q,q′

wF (q,q
′,k,k′)×

×{[fk′(1 − fk)(nq + 1)(nq′ + 1)− fk(1 − fk′)nqnq′ ]

δk,k′−q−q′δ(εk − εk′ + ~ωF
q + ~ωF

q′)

+ [fk′(1− fk)(nq + 1)nq′ − fk(1− fk′)nq(nq′ + 1)]

δk,k′−q+q′δ(εk − εk′ + ~ωF
q − ~ωF

q′)

+ [fk′(1− fk)nqnq′ − fk(1− fk′)(nq + 1)(nq′ + 1)]

δk,k′+q+q′δ(εk − εk′ − ~ωF
q − ~ωF

q′)

+ [fk′(1− fk)nq(nq′ + 1)− fk(1− fk′)(nq + 1)nq′ ]

δk,k′+q−q′δ(εk − εk′ − ~ωF
q + ~ωF

q′)
}

, (A8)

for scattering through two FPs.
Appendix B: Linearized collision integral

In this appendix we derive the linearized version of the
collision integrals given in Eqs. (A7) and (A8). We start

by expanding electron and phonon probability distribu-
tions around their equilibrium values,

fk = f
(0)
k + δfk, nq = n(0)

q + δnq, (B1)

where the variations can be written as δfk = −∂f
(0)
k

∂εk
ϕk

[see Eq. (26)] and δnq = − ∂n(0)
q

∂(~ωq)
χq. The linearized col-

lision integral δḟk
∣

∣

scatt
is then obtained by expanding

ḟk
∣

∣

scatt
up to first order in the variations.29,39

1. One phonon scattering

This case follows closely the steps outlined in Ref. 39,
and for the case of monolayer graphene it has been de-
rived in Ref. 7. Since the difference between monolayer
and bilayer amounts to a different kernel wν(q,k,k

′) in
Eqs. (A7), which does not play any role in the lineariza-
tion, we can directly apply the result of Ref. 7 to the
present case. In order to set notation for the more elabo-
rated case of two phonon scattering, we outline the main
steps of the derivation in the following.

We first note that at equilibrium detailed balance im-
plies ḟ (0)

k

∣

∣

scatt
= 0, from which we get the relation

f
(0)
k′ (1− f

(0)
k )n(0)

q = f
(0)
k (1 − f

(0)
k′ )(n

(0)
q + 1), (B2)

which can be easily verified by direct calculation.39

Therefore, in order to get the linearized collision integral
it is enough to calculate the variation,

δ [fk′(1− fk)nq − fk(1 − fk′)(nq + 1)] =

(1−f (0)
k )(1−f (0)

k′ )(n
(0)
q +1)δ

(

fk′

1− fk′

nq

nq + 1
− fk

1− fk

)

.

(B3)

The variations appearing on the right hand side of
Eq. (B3) can be computed easily by noting that

δ

(

f

1− f

)

=
δf

(1− f (0))2
and δ

(

f

n+ 1

)

=
δn

(n(0) + 1)2
.

(B4)
Using Eq. (B2), and rewriting δfk and δnq as

δfk = f
(0)
k (1 − f

(0)
k )

ϕk

kBT
δnq = n(0)

q (n(0)
q + 1)

χq

kBT
,

(B5)
it is easy to show that

δ [fk′(1− fk)nq − fk(1 − fk′)(nq + 1)] =

1

kBT
f
(0)
k (1− f

(0)
k′ )(n(0)

q + 1) (ϕk′ + χq − ϕk) . (B6)

The linearized collision integral may then be obtained,
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δḟk
∣

∣

scatt
= − π

~kBT

∑

k′

∑

q,ν

wν(q,k,k
′)f

(0)
k (1− f

(0)
k′ )(n(0)

q + 1) (ϕk′ + χq − ϕk) δk,k′+qδ(εk − εk′ − ~ων
q)

− π

~kBT

∑

k′

∑

q,ν

wν(q,k,k
′)(1 − f

(0)
k )f

(0)
k′ (n(0)

q + 1) (ϕk′ − ϕk − χq) δk,k′−qδ(εk − εk′ + ~ων
q). (B7)

Now we introduce two typical approximations: con-
sider phonons at equilibrium by taking χq ≈ 0, so that
nq ≈ n

(0)
q , valid at not too low temperatures;29 consider

quasielastic scattering, with εk, εk′ ≫ ~ωq. The latter
approximation enables us to rewrite the delta functions,
δ(εk − εk′ ± ~ων

q) → δ(εk − εk′), and to approximate

f
(0)
k (1− f

(0)
k′ ) by39

f
(0)
k (1−f (0)

k′ ) = (f
(0)
k′ −f (0)

k )n(0)
q ≈ ±~ωq

∂f
(0)
k

∂ǫk
n(0)
q . (B8)

The linearized collision integral then reads

δḟk
∣

∣

scatt
= −2π

~

∑

k′

∑

q,ν

wν(q,k,k
′)ων

q×

∂nq

∂ων
q

∂f
(0)
k

∂ǫk
(ϕk − ϕk′)δk,k′+qδ(ǫk − ǫk′), (B9)

where we have used equalities wν(q,k,k
′) =

wν(−q,k,k′) and ωq = ω−q. Finally, Eq. (B9)
can be put in the form of Eq. (27),

ḟk
∣

∣

scatt
= −

∑

k′

Pk,k′(ϕk − ϕk′), (B10)

where Pk,k′ is given in Eq. (32).

2. Two phonon scattering

Now we proceed with the linearization of the collision
integral in Eq. (A8), originating from scattering processes
involving two FPs. At equilibrium detailed balance is
guaranteed, ḟ (0)

k

∣

∣

scatt
= 0, and the following two relations

hold,

f
(0)
k′

1− f
(0)
k′

=
f
(0)
k

1− f
(0)
k

n
(0)
q

n
(0)
q + 1

n
(0)
q′

nq′ + 1
,

f
(0)
k′

1− f
(0)
k′

n
(0)
q′

n
(0)
q′ + 1

=
f
(0)
k

1− f
(0)
k

n
(0)
q

n
(0)
q + 1

. (B11)

In order to get the linearized collision integral it is easy
to see that we only need the following two variations,

δ [fk′(1− fk)(nq + 1)(nq′ + 1)− fk(1− fk′)nqnq′ ] =

(1− f
(0)
k )(1− f

(0)
k′ )(n(0)

q + 1)(n
(0)
q′ + 1)×

δ

(

fk′

1− fk′

− fk
1− fk

nq

nq + 1

nq′

nq′ + 1

)

, (B12)

and

δ [fk′(1− fk)(nq + 1)nq′ − fk(1− fk′)nq(nq′ + 1)] =

(1− f
(0)
k )(1− f

(0)
k′ )(n(0)

q + 1)(n
(0)
q′ + 1)×

δ

(

fk′

1− fk′

nq′

nq′ + 1
− fk

1− fk

nq

nq + 1

)

, (B13)

the other two possibilities being related with these ones
by a minus sign and k → k′. The variations appearing
on the right hand side of Eqs. (B12) and (B13) can be
computed easily by using Eq. (B4). We then arrive at
the variations

δ [fk′(1− fk)(nq + 1)(nq′ + 1)− fk(1− fk′)nqnq′ ] =

(1− f (0)
k )f

(0)
k′ (n(0)

q +1)(n
(0)
q′ +1)

(ϕk′ − ϕk − χq − χq′)

kBT
(B14)

and

δ [fk′(1− fk)(nq + 1)nq′ − fk(1− fk′)nq(nq′ + 1)] =

(1− f
(0)
k )f

(0)
k′ (n(0)

q + 1)n
(0)
q′

(ϕk′ + χq′ − ϕk − χq)

kBT
,

(B15)

where we used Eq. (B5) and the relations in Eq. (B11).
It is convenient to express the quantity (1 − f

(0)
k )f

(0)
k′ in

terms of the difference (f
(0)
k′ − f

(0)
k ). For that we use the

relation

(1− f
(0)
k )f

(0)
k′ =

f
(0)
k′ − f

(0)
k

1− exp[(εk′ − εk)/kBT ]
, (B16)

which is easily verified by direct calculation. For the case
of Eq. (B14), where εk′ −εk = ~ωF

q +~ωF
q′ holds, we have

1

1− exp[(εk′ − εk)/kBT ]
= − nqnq′

1 + nq + nq′

, (B17)
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while in the case of Eq. (B15), where εk′ − εk = ~ωF
q −

~ωF
q′ , we get

1

1− exp[(εk′ − εk)/kBT ]
=
nq(1 + nq′)

nq − nq′

. (B18)

The variations in Eqs. (B12) and (B13) may then be cast
in the form

δ [fk′(1− fk)(nq + 1)(nq′ + 1)− fk(1− fk′)nqnq′ ] =

−(f
(0)
k′ −f (0)

k )
∂n

(0)
q

∂(~ωF
q )

∂n
(0)
q′

∂(~ωF
q′)

kBT (ϕk′ − ϕk − χq − χq′)

1 + nq + nq′

,

(B19)

and

δ [fk′(1− fk)(nq + 1)nq′ − fk(1− fk′)nq(nq′ + 1)] =

(f
(0)
k′ −f (0)

k )
∂n

(0)
q

∂(~ωF
q )

∂n
(0)
q′

∂(~ωF
q′)

kBT (ϕk′ + χq′ − ϕk − χq)

nq − nq′

.

(B20)

Inserting the latter results into the variation of the two
phonon collision integral in Eq. (A8), and recalling that
there are two other terms which can be obtained from
Eqs. (B19) and (B20) by multiplying a minus sign and
substituting k → k′, we obtain

δḟk
∣

∣

scatt
= −π

~

∑

k′

∑

q,q′

wF (q,q
′,k,k′)(f

(0)
k′ − f

(0)
k )

∂n
(0)
q

∂(~ωF
q )

∂n
(0)
q′

∂(~ωF
q′)

kBT

1 + nq + nq′

(ϕk′ − ϕk − χq − χq′)×

δk,k′−q−q′δ(εk − εk′ + ~ωF
q + ~ωF

q′)

+
π

~

∑

k′

∑

q,q′

wF (q,q
′,k,k′)(f

(0)
k′ − f

(0)
k )

∂n
(0)
q

∂(~ωF
q )

∂n
(0)
q′

∂(~ωF
q′)

kBT

nq − nq′

(ϕk′ + χq′ − ϕk − χq)×

δk,k′−q+q′δ(εk − εk′ + ~ωF
q − ~ωF

q′)

+
π

~

∑

k′

∑

q,q′

wF (q,q
′,k,k′)(f

(0)
k′ − f

(0)
k )

∂n
(0)
q

∂(~ωF
q )

∂n
(0)
q′

∂(~ωF
q′)

kBT

1 + nq + nq′

(ϕk′ + χq + χq′ − ϕk)×

δk,k′+q+q′δ(εk − εk′ − ~ωF
q − ~ωF

q′)

− π

~

∑

k′

∑

q,q′

wF (q,q
′,k,k′)(f

(0)
k′ − f

(0)
k )

∂n
(0)
q

∂(~ωF
q )

∂n
(0)
q′

∂(~ωF
q′)

kBT

nq − nq′

(ϕk′ + χq − ϕk − χq′)×

δk,k′+q−q′δ(εk − εk′ − ~ωF
q + ~ωF

q′). (B21)

Now we introduce the two typical approximations:
consider phonons to be in equilibrium, χq ≈ 0, so that
nq ≈ n

(0)
q ; assume quasielastic scattering. From the lat-

ter we obtain δ(εk − εk′ ± ~ωF
q ± ~ωF

q′) → δ(εk − εk′)

and f (0)
k′ − f

(0)
k ≈ ±∂fk

∂εk

(

~ωF
q ± ~ωF

q′

)

, and the linearized
collision integral then reads,

δḟk
∣

∣

scatt
= −2π

~2
kBT

∂fk
∂εk

∑

k′

(ϕk′ − ϕk)×

∑

q,q′

wF (q,q
′,k,k′)

(

ωF
q + ωF

q′

1 + nq + nq′

−
ωF
q − ωF

q′

nq − nq′

)

×

∂nq

∂ωF
q

∂nq′

∂ωF
q′

δk,k′+q+q′δ(ǫk − ǫk′), (B22)

where we have used the fact that wF (q,q
′,k,k′) is in-

variant under changes q → −q and q′ → −q′, and

ωF
q = ωF

−q. It can be written in the form of Eq. (B10),
with Pk,k′ as given in Eq. (33).

Appendix C: Calculating the resistivity

In this appendix we provide details regarding the
calculation of the T−dependent resistivity for bilayer
graphene. The variational method is used, with resistiv-
ity given by Eq. (36). Writing the numerator in Eq. (36)
as in Eq. (37), the resistivity can be cast in the form

̺ =
V~2

8π2e2k4F

ˆ

dkdk′ (K · u)2 Pk,k′ . (C1)

The remaining task is the calculation of the integral on
the right hand side of Eq. (C1).
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1. Scattering by in-plane phonons

This case follows closely the derivation to the Bloch
T 5 law in 3-dimensional metals.29 Inserting Eq. (32) for
Pk,k′ into Eq. (C1) we get

̺ =
V~

4πe2k4F

ˆ

dkdk′ (K · u)2 ×

∑

ν

wν(K,k,k
′)ων

K

∂n
(0)
K

∂ων
K

∂f
(0)
k

∂ǫk
δ(ǫk − ǫk′), (C2)

where we have already performed the sum over q. We can
simplify the integral above by integrating over k and k′

noting the presence of δ(ǫk− ǫk′) and ∂fk
∂ǫk

≈ −δ(ǫF − ǫk).
The result reads,

̺ ≈ − V~
4πe2k4F

(m

~2

)2

×
ˆ

dθkdθk′ (K · u)2
∑

ν

wν(K, kF êk, kF êk′)ων
K

∂n
(0)
K

∂ων
K

,

(C3)

with K = kF (êk− êk′). In order to proceed with the cal-
culation we have to specify the kernel wν(K, kF êk, kF êk′)
given in Eq. (34). Making use of the matrix elements in
Eq. (23) we get,

wν(K, kF êk, kF êk′) ≡ wν(K) =
[Dν

B(K/kF )]
2
~
3k2FK

2

2Vρv2Fm2ων
K

,

(C4)

with Dν
B(x) as given in Eq. (43), and where we have

used the relation K = 2kF sin(θk,k′/2). The kernel de-
pends only on θk,k′ , or equivalentlyK (the norm of K),
as is the case of the rest of factors in the integrand of
Eq. (C3) but for (K · u)2. The latter can be written
as (K · u)2 = K2 cos2 γ, and the angular integration is
then conveniently done by integrating over γ keeping
θk,k′ = θk − θk′ ≡ θ constant, and integrate over θ after-
ward, or equivalently K. Using dθ = dK/

√

k2F −K2/4,
the resistivity becomes

̺ ≈ − Vm2

2~3e2k4F

∑

ν

ˆ 2kF

0

dK
K2wν(K)ων

K
√

k2F −K2/4

∂n
(0)
K

∂ων
K

. (C5)

Inserting Eq. (C4) for the kernel wν(K) into Eq. (C5) we
readily obtain Eq. (42). From that it is straightforward
to calculate analytically the two limiting cases, T ≪ TBG

and T ≫ TBG.29

2. Scattering by flexural phonons

Inserting Eq. (33) for Pk,k′ into Eq. (C1) we get

̺ = − VkBT
4πe2k4F

ˆ

dkdk′ (K · u)2 ×

∑

q

wF (q,K− q,k,k′)
∂nq

∂ωF
q

∂nq′

∂ωF
q′

∂f
(0)
k

∂εk
δ(εk − εk′)×

(

ωF
q + ωF

K−q

1 + nq + nK−q

−
ωF
q − ωF

K−q

nq − nK−q

)

, (C6)

where we have already performed the sum over q′. We
can simplify the integral above by integrating over k and
k′ noting the presence of δ(ǫk − ǫk′) and ∂fk

∂ǫk
≈ −δ(ǫF −

ǫk). The result reads,

̺ ≈ VkBT
4πe2k4F

(m

~2

)2
ˆ

dθkdθk′ (K · u)2 ×
∑

q

wF (q,K− q, kF êk, kF êk′)
∂nq

∂ωF
q

∂nK−q

∂ωF
K−q

(

ωF
q + ωF

K−q

1 + nq + nK−q

−
ωF
q − ωF

K−q

nq − nK−q

)

. (C7)

The kernel wF (q,K− q, kF êk, kF êk′) is given by
Eq. (34) with V ν

q → V F
q,q′ (see Appendix A for a deriva-

tion). Inserting the matrix elements in Eq. (23) it takes
the explicit form

wF (q,K− q, kF êk, kF êk′) ≡ wF (q,K, |K− q|)

=

[

DF
B(K/kF )

]2
~
4q2k2F |K− q|2

24V2m2ρ2v2Fω
F
q ω

F
|K−q|

, (C8)

with DF
B(x) as given in Eq. (50), and where we have used

the relation K = 2kF sin(θk,k′/2) and assumed ωF
q given

by Eq. (8). In deriving Eq. (C8) we used cos2(φ − φ′) =
[1 + cos(2φ − 2φ′)]/2 and dropped the oscillatory part.
The sum over q can be replaced by an integral,

∑

q →
V

(2π)2

´

qdqdφ, and owing to the relation Q2 ≡ |K−q|2 =

K2 + q2 − 2qK cosφ we can write the resistivity as

̺ ≈ V2kBT

8π3e2k4F

(m

~2

)2
ˆ

dθkdθk′ (K · u)2
ˆ ∞

0

dq q
∂nq

∂ωF
q

×
ˆ |K+q|

|K−q|

dQ
QwF (q,K,Q)

√

q2K2 −
(

K2 + q2 −Q2
)2

/4

∂nQ

∂ωF
Q

×

(

ωF
q + ωF

Q

1 + nq + nQ
−
ωF
q − ωF

Q

nq − nQ

)

, (C9)

where we used dφ =

dQQ/

√

q2K2 −
(

K2 + q2 −Q2
)2

/4. As in Sec. C 1, the
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angular integration over θk and θk′ is conveniently done
by integrating over γ, with (K · u)2 = K2 cos2 γ, keeping
θk,k′ = θk − θk′ ≡ θ and q and |K− q| ≡ Q constant,
and integrate over θ afterward, q and Q. The resistivity
may then be written as

̺ ≈ kBT

26π2e2ρ2v2Fk
2
F

ˆ 2kF

0

dK

[

DF
B(K/kF )

]2
K2

√

k2F −K2/4
×

ˆ ∞

0

dq
q3

ωF
q

∂nq

∂ωF
q

ˆ |K+q|

|K−q|

dQ
Q3

ωF
Q

√

q2K2 −
(

K2 + q2 −Q2
)2

/4

×

∂nQ

∂ωF
Q

(

ωF
q + ωF

Q

1 + nq + nQ
−
ωF
q − ωF

Q

nq − nQ

)

, (C10)

where dθ = dK/
√

k2F −K2/4 has been used, and we used
Eq. (C8) for the kernel.

a. Non-strained flexural phonons

In the absence of strain the FP dispersion reads
ωF
q = αq2. After rescaling momentum as x → x̃ =

x(~α/kBT )
1/2 we can rewrite the resistivity as,

̺ ≈ (kBT )
2

26π2~e2ρ2v2Fk
2
Fα

4

ˆ 2k̃F

0

dK̃
[DF

B(K̃/k̃F )]
2K̃2

√

k̃2F − K̃2/4
×

ˆ ∞

0

dq̃q̃nq̃(nq̃+1)

ˆ |K̃+q̃|

|K̃−q̃|

dQ̃
Q̃nQ̃(nQ̃ + 1)

√

q̃2K̃2 −
(

K̃2 + q̃2 − Q̃2
)2

/4

×

(

q̃2 + Q̃2

1 + nq̃ + nQ̃

− q̃2 − Q̃2

nq̃ − nQ̃

)

. (C11)

The integral over Q̃ is infrared divergent, and is thus
dominated by the contribution K̃ ∼ q̃. Defining the small
quantity δx = |K̃−q̃|, and noting that for Q̃≪ 1 we have
nQ̃ ∼ 1/Q̃2 ≫ 1, it is possible to identify the dominant

contribution in the Q̃ integral as,

ˆ |K̃+q̃|

|K̃−q̃|

dQ̃
Q̃nQ̃(nQ̃ + 1)

√

q̃2K̃2 −
(

K̃2 + q̃2 − Q̃2
)2

/4

×

(

q̃2 + Q̃2

1 + nq̃ + nQ̃

− q̃2 − Q̃2

nq̃ − nQ̃

)

∼ 2K̃2

ˆ 2K̃

δx

dQ̃
nQ̃ + 1

K̃
∼ 2K̃

δx
.

It is now obvious that the q̃ integral has a logarith-
mic divergence for q̃ ∼ K̃. Note, however, that in the
present theory phonons have an infrared cutoff, so that
min |K̃ − q̃| = q̃c, where q̃c ≪ 1 is either due to strain or
anharmonic effects. The dominant contribution to the q̃
integral is then coming from the maximum of 1/|K̃ − q̃|,

from which we obtain

2K̃

ˆ ∞

0

dq̃ q̃nq̃(nq̃+1)
1

|q̃ − K̃|
∼ −2πK̃2nK̃(nK̃+1) ln(q̃c).

The resistivity may finally be written as a simple integral
over K̃,

̺ ≈ (kBT )
2

26π~e2ρ2v2F k
2
Fα

4
ln

(

kBT

~αq2c

)

×
ˆ 2k̃F

0

dK̃
[D(K̃/k̃F )]

2

√

k̃2F − K̃2/4
K̃4nK̃(nK̃ + 1), (C12)

form which Eq. (49) is readily obtained.

b. Strained flexural phonons

The flexural phonon dispersion in the isotropic approx-
imation is ωF

q ≈
√

α2q4 + ūv2Lq
2 [see Eq. (8)]. After

rescaling momenta x → x̃ = x~vLu
1/2/(kBT ) the re-

sistivity in Eq. (C10) takes the form given in Eq. (56).
The low T regime is detailed in the main text. Here we
concentrate in the high T regime, showing in particular
how to obtain Eq. (60) for the integrals over q̃ and Q̃ in
Eq. (56).

We start by writing the Q̃ integral in Eq. (56) as

I(γ, K̃, q̃) ≡
ˆ |K̃+q̃|

|K̃−q̃|

dQ̃
Q̃3nQ̃(nQ̃ + 1)

√

q̃2K̃2 −
(

K̃2 + q̃2 − Q̃2
)2

/4

×

1
√

γ2Q̃4 + Q̃2





√

γ2q̃4 + q̃2 +

√

γ2Q̃4 + Q̃2

1 + nq̃ + nQ̃

−

−
√

γ2q̃4 + q̃2 −
√

γ2Q̃4 + Q̃2

nq̃ − nQ̃



 , (C13)

with γ =
√
2ωF

qT /ω
F
q∗ Having in mind that high T im-

plies K̃ ≪ 1, we consider the integration in Eq. (C13) in
two limiting cases: when q̃ . K̃ ≪ 1 and for q̃ ≫ K̃.
In the former case, since q̃ ≪ 1 and Q̃ ≪ 1 hold, we
can linearize the dispersion relation and approximate the
Bose-Einstein distribution function by nq̃ ≈ 1/q̃ and
nQ̃ ≈ 1/Q̃ (as discussed in the main text, finite strain
implies kF ≪ q∗, so that the linearization of the flexu-
ral phonon dispersion can be taken when q̃ . K̃ ≪ 1

holds). The integral over Q̃ in Eq. (C13) may then be
approximated by

I(γ, K̃, q̃) ≈
ˆ |K̃+q̃|

|K̃−q̃|

dQ̃
2q̃Q̃

√

q̃2K̃2 −
(

K̃2 + q̃2 − Q̃2
)2

/4

,

(C14)
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and the integral can be done as

I(γ, K̃, q̃) ≈
ˆ |K̃+q̃|

|K̃−q̃|

dQ̃
4q̃Q̃

√

Y (q̃, Q̃, K̃)

= 2q̃ arctan





q̃2 + K̃2 − Q̃2

√

Y (q̃, Q̃, K̃)





|K̃+q̃|

|K̃−q̃|

= 2πq̃ ≡ I(q̃),

(C15)

where we have defined

Y (q̃, Q̃, K̃) = −(q̃−K̃−Q̃)(q̃−K̃+Q̃)(q̃+K̃−Q̃)(q̃+K̃+Q̃).

On the other hand, for q̃ ≫ K̃ the integration region is
concentrated around q̃. We may then write the integral
in Eq. (C13) as a slowly varying function, which we can
take out of the integral, multiplied by an integral of the
form of that in Eq. (C14),

I(γ, K̃, q̃) ≈ q̃2nq̃(nq̃ + 1)
√

γ2q̃4 + q̃2

(

2
√

γ2q̃4 + q̃2

1 + 2nq̃
+

1

nq̃(nq̃ + 1)

)

×

ˆ |K̃+q̃|

|K̃−q̃|

dQ̃
Q̃

√

q̃2K̃2 −
(

K̃2 + q̃2 − Q̃2
)2

/4

≈

πq̃2nq̃(nq̃ + 1)
√

γ2q̃4 + q̃2

(

2
√

γ2q̃4 + q̃2

1 + 2nq̃
+

1

nq̃(nq̃ + 1)

)

≡ I(γ, q̃).

(C16)

Since for q̃ . K̃ the later result reduces to 2πq̃, as in
Eq. (C15), we can use I(γ, q̃) in Eq. (C16) to approximate
the Q̃ integral, Eq. (C13), in the full region q̃ . K̃ ≪ 1

to q̃ ≫ K̃. This has been tested numerically to be a
good approximation as long as K̃ ≪ 1. The q̃ integral
in Eq. (56) may then be cast in the K̃ independent form
given in Eq. (60).

Appendix D: Perturbative treatment of anharmonic

effects

Recently it has been demonstrated how anharmonic
effects in stiff membranes as graphene are highly sup-
pressed by applying tension.38 In this Appendix we show
how the infrared cutoff qc of our (harmonic) theory de-
pends on the applied strain. This is consistent with the
sample to sample differences of order unity reported in
recent measurements of electron mobilities in doped sus-
pended monolayer graphene.6 As argued in Ref. 6, com-
paring qc ≈ 0.1Å

−1
,37 (the infrared cutoff for the har-

monic theory in the absence of strain), and q∗ [the mo-
mentum scale associated to the presence of strain, de-
fined by Eq. (55)] gives u ∼ 10−4 − 10−3 as the strain

involved in such kind of experiments. In order to esti-
mate properly this number we have to know how qc is

+

Figure 3: First order diagrams for Σ(q). The curly line rep-
resents the free correlator of flexural phonons, the dashed
line corresponds to the 4-leg interaction vertex associated to
Rij,kl (k). The second diagram is 0, since the q = 0 Fourier
component of the transverse projector is integrated out during
the in-plane modes Gaussian integration.

affected by strain. The discussion can be applied to both
cases, monolayer or bilayer graphene.

In order to estimate anharmonic effects in the disper-
sion relation of FPs, since Eq. (1) is quadratic in the
in-plane displacements we can integrate them out to ob-
tain the effective free-energy for the out-of-plane degree
of freedom40

Feff =
1

2
κ

ˆ

dxdy
(

∇2h
)2
+
1

2

ˆ

dxdyRij,kl∂
ih∂jh∂kh∂lh,

(D1)
where the four-point-coupling fourth-order tensor can be
written as Rij,kl = K0

4 P
T
ijP

T
kl , the operator PT

ij is the

transverse projector PT
ij =

(

∇2
)−1

εikεjl∂
k∂l, and K0 =

4µ(µ+λ)
2µ+λ . In order to include the effect of strain, we add

to Eq. (D1) the simplest term which breaks rotational
symmetry

1

2
γ

ˆ

dxdy (∇h)2 ,

where γ is a sample-dependent coefficient with units of
tension which can be related with the strain of the sam-
ple. This approach follows the spirit of the effective
isotropic dispersion relation of FPs introduced in Eq. (8).
If we add to Eq. (1) the most general term to first or-
der in the derivatives of the displacement fields which
breaks rotational symmetry and then we integrate out
the in-plane degrees of freedom, we obtain a new two-
point vertex whose contribution to the renormalization of
the bending rigidity is weak and can be neglected.38. We
are going to study the Fourier component of the height-
height correlation function

G (q) =
〈

|h (q)|2
〉

=
1

Z

ˆ

Dh (q) |h (q)|2 eSeff [h(q)],

where obviously Z =
´

Dh (q) eSeff

is the partition func-
tion of the system, the effective action is nothing but
Seff [h (q)] = −βF eff [h (q)], and the Fourier trans-
formed effective free energy reads
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Feff [h (q)] =

ˆ

d2q

(2π)
2

(κ

2
q4 +

γ

2
q2
)

|h (q) |2+1

2

ˆ 4
∏

i=1

d2qi

(2π)
8 q

i
1q

j
2q

k
3q

l
4Rij,kl (q1 + q2) δ

(2) (q1 + q2 + q3 + q4) , (D2)

where Rij,kl (k) = K0

4 P
T
ij (k)P

T
ij (k), and the Fourier

transformed transverse projector reads PT
ij (k) =

k−2εikεjlk
kkl = δij − kikj

k2 . It is important to note that
the q = 0 Fourier component of the transverse projector
is integrated out during the Gaussian integration of the
in-plane modes.40 In the harmonic approximation and in
the absence of strain (γ = 0), the (free) correlator is given
by

G(0) (q) =
KBT

κq4
. (D3)

When we assume a quadratic dispersion relation we are
taking this correlator as the proper one. This approx-
imation is obviously affected by the presence of strain
and anharmonic effects (also affected by strain), which
renormalizes the bending rigidity κ. Then, we can write
G−1 (q) ∝ κ (q) q4 and study the renormalization of κ
from the Dyson equation

G−1 (q) =
(

G(0) (q)
)−1

+Σ(q) , (D4)

where now the correlator in the harmonic theory, includ-
ing the effect of strain, is given by

G(0) (q) =
KBT

κq4 + γq2
. (D5)

In order to estimate the anharmonic effects we compute
the first order diagrams for self-energy, showed in Fig. 3.
Only the first diagram gives a non-zero contribution

Σ(1) (q) = 4β

ˆ

d2k

(2π)
2 q

iqjqkqlRij,kl (k)G
(0) (q− k) .

(D6)
Replacing this result in equation Eq. (D4) we obtain

κ (q) = κ+
γ

q2
+KBTK0

ˆ

d2k

(2π)2

(

1− (q·k)2

q2k2

)2

κ|q− k|4 + γ|q− k|2 .

(D7)

Follow the Ginzburg criterion,41 we estimate the cutoff of
the theory nothing but comparing each correcting term
of Eq. (D7) with the bare value of κ. As we have already
mentioned, there are two different cutoffs, the one given
by strain in the harmonic approximation, and the other
one associated to anharmonic effects. The first one is
given by the second term of Eq. (D7), and it is nothing
but q∗,

q∗ =

√

γ

κ
. (D8)

2.10-4 4.10-4 6.10-4 8.10-4 10-3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

u

q c
HÅ
-

1
L

Figure 4: The infrared cutoff qc as a function of the ap-
plied strain u for monolayer (in red dashed line) and bilayer
graphene (in blue). In both cases T = 300 K.

Identifying this result with the momentum scale defined
by Eq. (55), we deduce the relation between γ and u:
γ = (λ+ 2µ)u.

The cutoff of the harmonic theory is also affected by
strain. Following the same criterion, its value comes from
the solution to the equation

κ =
KBTK0

(2π)2 κ

ˆ 2π

0

dθ

ˆ ∞

0

dk
k sin4 (θ)

(k2 + q2 − 2kq cos (θ))2 + (q∗)2 (k2 + q2 − 2kq cos (θ))
. (D9)

In the absence of strain, we have qc =
√

3KBTK0

16πκ2 , which gives at T = 300 K the value qc = 0.178Å
−1

in the case
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of monolayer, and qc = 0.126Å
−1

in the case of bilayer
graphene. Its dependence on the applied strain is shown
in Fig. 4. It is clear that qc decreases as the strain in-

creases, so the unavoidable little strain present in real
samples increases the validity of the harmonic approxi-
mation.
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