The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/92320

Please be advised that this information was generated on 2019-12-27 and may be subject to change.
Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC

ATLAS Collaboration*

A B S T R A C T

Hitherto unobserved long-lived massive particles with electric and/or colour charge are predicted by a range of theories which extend the Standard Model. In this Letter a search is performed at the ATLAS experiment for slow-moving charged particles produced in proton–proton collisions at 7 TeV centre-of-mass energy at the LHC, using a data-set corresponding to an integrated luminosity of 34 pb$^{-1}$. No deviations from Standard Model expectations are found. This result is interpreted in a framework of supersymmetry models in which coloured sparticles can hadronise into long-lived bound hadronic states, termed R-hadrons, and 95% CL limits are set on the production cross-sections of squarks and gluinos. The influence of R-hadron interactions in matter was studied using a number of different models, and lower mass limits for stable sbottoms and stops are found to be 294 and 309 GeV respectively. The lower mass limit for a stable gluino lies in the range from 562 to 586 GeV depending on the model assumed. Each of these constraints is the most stringent to date.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The discovery of exotic stable massive particles (SMPs) at the LHC would be of fundamental significance. The motivation for SMP searches at ATLAS arises, for example, from proposed solutions to the gauge hierarchy problem, which involve previously unseen particles with TeV-scale masses [1,2]. The ATLAS experiment has recently searched for SMPs with large electric charge [3]. SMPs possessing colour charge represent another class of exotic particle which can be sought. Hadronising SMPs are anticipated in a wide range of exotic physics models [1] that extend the Standard Model (SM). For example, these particles appear in both R-parity conserving supersymmetry (SUSY) and universal extra dimensions. The possibility of direct pair production through the strong nuclear force implies large production cross-sections. Searches for these particles are thus an important component of the early data exploitation programs of the LHC experiments [4]. In this Letter, the first limits from the ATLAS experiment are presented on the production of coloured, hadronising SMPs in proton–proton collisions at 7 TeV centre-of-mass energy at the LHC. Results are presented in the context of SUSY models predicting the existence of R-hadrons [5], which are heavy objects formed from a coloured sparticle (squark or gluino) and light SM partons.

SMPs produced at LHC energies typically possess the following characteristics: they are penetrating and propagate at a low enough speed that they can be observed as being subluminal using measurements of time-of-flight and specific ionisation energy loss [1]. Previous searches for R-hadrons have typically been based on either the signature of a highly ionising particle in an inner tracking system [7–9] or a slow-moving muon-like object [9–11]. The latter limits rely on the assumption that the R-hadron is electrically charged when it leaves the calorimeter and can thus be detected in an outer muon system. However, hadronic scattering of R-hadrons in the dense calorimeter material, and the properties of different mass hierarchies for the R-hadrons, may render most of the produced R-hadrons electrically neutral in the muon system [12]. Such an effect is expected for R-hadrons formed from sbottom-like squarks [13]; the situation for gluino-based R-hadrons is unclear, with different models giving rise to different phenomenologies. The previous mass limit for gluino R-hadrons with minimal sensitivity to scattering uncertainties is 311 GeV at 95% confidence level [9] from the CMS Collaboration.
The ATLAS detector contains a number of subsystems which provide information which can be used to distinguish SMPS from particles moving at velocities close to the speed of light. Two complementary subsystems used in this work are the pixel detector, which measures ionisation energy loss (dE/dx), and the tile calorimeter, which measures the time-of-flight from the interaction point for particles which traverse it. Furthermore, since there is no requirement that a candidate be reconstructed in the outer muon spectrometer, the search is robust to theoretical uncertainties on the fraction of R-hadrons that are charged when leaving the calorimeter system. The analysis extends the mass limits beyond already published limits and represents the first dedicated direct search for sbottom R-hadrons at a hadron collider.

2. Simulation of R-hadrons and background processes

Monte Carlo simulations are used primarily to determine the efficiency of the R-hadron selection together with the associated systematic uncertainties. Predicted backgrounds are estimated using data, as described in Section 4. However, simulated samples of background processes (QCD and E\text{efficiency of the}}

3. The ATLAS detector

The ATLAS detector is described in detail in Ref. [26]. Below, some features of the subsystems most important for the present analysis are outlined.

3.1. Specific energy loss from the pixel detector

As the innermost sub-detector in ATLAS, the silicon-based pixel detector contributes to precision tracking in the region^{1} |η| < 2.5. The sensitive detectors of the pixel detector barrel are placed on three concentric cylinders around the beam-line, whereas each end-cap consists of three disks arranged perpendicular to the beam axis. The pixel detector therefore typically provides at least three measurements for each track. In the barrel (end-cap) the intrinsic accuracy is 10 μm in the r–φ plane and 115 μm in the z (r)–direction. The integrated time during which a signal exceeds threshold has a sub-linear dependence on the charge deposited in each pixel. This has been measured in dedicated calibration scans, enabling an energy loss measurement for charged particles using the pixel detector.

The charge released by a track crossing the pixel detector is rarely contained within just one pixel. Neighbouring pixels are joined together to form clusters, and the charge of a cluster is calculated by summing up the charges of all pixels after applying a correction calibration. The specific energy loss, dE/dx, is estimated as an average of the individual cluster dE/dx measurements (charge collected in the cluster, corrected for the track length in the sensor), for the clusters associated with the track. To reduce the effects of the Landau tail, the dE/dx of the track is calculated as the truncated mean of the individual cluster measurements. In the study presented here at least two clusters are required for the pixel detector dE/dx measurement (dE/dx_{Pixel}). Further details and performance of the method are described in [27].

3.2. Time-of-flight from the tile calorimeter

The ATLAS tile calorimeter is a sampling calorimeter that constitutes the barrel part of the hadronic calorimetry in ATLAS. It is situated in the region 2.3 < r < 4.3 m, covering |η| ≤ 1.7, and uses iron as the passive material and plastic scintillators as active layers. Along the beam axis, the tile calorimeter is logically subdivided into four partitions, each segmented in equal intervals of azimuthal angle (φ) into 64 modules. The modules are further divided into cells, which are grouped radially in three layers, covering 0.1 units in η in the first two layers and 0.2 in the third. Two bundles of wavelength-shifting fibres, associated with each cell, guide the scintillation light from the exposed sides of the module to photomultiplier tubes. The signal from each photomultiplier tube is digitised using dual ADCs covering different dynamic ranges. Analysing seven consecutive samplings with an interval of 25 ns allows the amplitude, pedestal value and peak position in time to be extracted. The tile calorimeter provides a timing resolution of 1–2 ns per cell for energy deposits typical of minimum-ionising particles (MIPs). The measured times have been corrected for drifts in the LHC clock using high-precision timing measurements from a beam pick-up system [28] and calibrated such that energy depositions associated with muons from Z-boson decays are aligned at t = 0 in both data and simulations.

Although the readout electronics have been optimised to provide the best possible timing resolution for β = 1 particles, the performance for slower particles (0.3 < β < 1) is not seriously compromised. In addition, SMPS tend to traverse the entire tile calorimeter, leaving statistically independent signals in up to six cells.

\(^{1}\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle 0 as η = −ln(tan(θ/2)).
The time-of-flight and hence the speed, β, of an R-hadron candidate can be deduced from time measurements in the tile calorimeter cells along the candidate trajectory. All cells along the particle trajectory with an energy deposition larger than 500 MeV are used to make an independent estimate of β. The time resolution has been shown to improve with the energy measured in the cell [29], so the cells are combined using an average weighted by cell energy to get a velocity measurement (β_{Tile}). Combining the measurements from all cells results in a time resolution of ~ 1 ns.

Table 1 shows the cut flow of the analysis. After the trigger selection, each event is required to contain a track with a transverse momentum greater than 10 GeV. This track must be matched either to a muon reconstructed in the muon spectrometer or to a cluster in the tile calorimeter. The track is required to have MIP-compatible energy depositions in the calorimeter. Such an event is referred to in the table as a candidate event. Each event is required to contain at least one good primary vertex, to which at least three tracks are associated. Only tracks in the central region ($|\eta| < 1.7$) are considered. This matches the acceptance of the tile calorimeter. To ensure well measured kinematics, track quality requirements are made: the track must have at least two hits in the pixel detector, at least six hits in the silicon-strip Semiconductor Tracker, and at least six associated hits in the Transition Radiation Tracker (TRT). Jet objects are reconstructed using the anti-k_t jet clustering algorithm [31,32] with a distance parameter of 0.4. In order to suppress backgrounds from jet production, the distance in η--ϕ space between the candidate and any jet with $E_T > 50$ GeV must be greater than $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.5$. Finally, the measured transverse momentum of the candidate must be greater than 50 GeV.

After the selection, 5208 candidate particles in 5116 events are observed. Fig. 1 shows the dE/dx_{Pixel} and β_{Tile} distributions for these candidates together with background simulations. As can be seen, the β_{Tile} measurements are centred around one. The width of the distribution, as determined by a Gaussian fit around the bulk of the data, is ~ 0.1. Reasonable agreement between data and the background simulations is observed, although the latter calcula-
tions are not used in any quantitative way in the analysis. The expected distributions for signal particles are overlaid and scaled to the luminosity of the data by their production cross-section, illustrating the sensitivity of these observables to R-hadrons.

5. Mass reconstruction

For each candidate, the mass is estimated by dividing its momentum by $\beta \gamma$, determined either from pixel detector ionisation or from the tile calorimeter time-of-flight. In the pixel detector, the following simplified Bethe–Bloch equation gives a good description of the relation between the most probable value (M_{dE}) of dE/dx_{Pixel} and $\beta \gamma$ in the range relevant to this analysis ($0.2 < \beta \gamma < 1.5$):

$$M_{dE}(\beta) = \frac{p_{\text{Pixel}}}{\beta \gamma} \ln(1 + (p_{2} \beta \gamma)^{p_{3}}) - p_{4}$$ \hspace{1cm} (1)

To find β, and hence a mass estimate, this equation must be solved for β, identifying the measured dE/dx_{Pixel} and $\beta \gamma$ with well-known masses and ionisation properties, p, K and π [27], and provide a relative dE/dx_{Pixel} resolution of about 10% in the asymptotic region ($\beta \gamma > 1.5$). To reduce the backgrounds further, the final selection requires that $dE/dx_{\text{Pixel}} > 1.8 \text{ MeV g}^{-1} \text{cm}^2$ compared to $dE/dx_{\text{Pixel}} \sim 1.1 \text{ MeV g}^{-1} \text{cm}^2$ deposited by a MIP. In the tile calorimeter, the β-values are required to be less than 1.

The pixel detector and the tile calorimeter provide independent measurements from which the mass of the SMP candidate can be estimated. Making requirements on both mass estimates is a powerful means to suppress the tails in the individual distributions arising from instrumental effects. In Fig. 2 the estimated mass distributions based on dE/dx_{Pixel} and p_{Tile} are shown after the 50 GeV transverse momentum cut of the event selection. In contrast to the other figures in this Letter, the signal distributions are stacked on top of the background to illustrate the total expected spectra for the signal + background scenarios.

To establish signal regions for each mass hypothesis, the mean, μ, and Gaussian width, σ, of the mass peak is determined for both the pixel detector and the tile calorimeter measurement. The signal region is then defined to be the region above the fitted mean minus twice the standard deviation ($\text{i.e. } \mu_{\text{Pixel}} - 2\sigma_{\text{Pixel}}$ for the mass as estimated by the pixel detector and $\mu_{\text{Tile}} - 2\sigma_{\text{Tile}}$ for the mass as estimated by the tile calorimeter). The final signal region is defined by applying both of the individual mass requirements.

6. Background estimation

Rather than relying on simulations to predict the tails of the dE/dx_{Pixel} and p_{Tile} distributions, a data-driven method is used to estimate the background. No significant correlations between the measurements of momentum, dE/dx_{Pixel}, and p_{Tile} are observed. This is exploited to estimate the amount of background arising from instrumental effects. Estimates for the background distributions of the mass estimates are obtained by combining random momentum values (after the kinematic cuts defined above) with random measurements of dE/dx_{Pixel} and p_{Tile}. The sampling is performed from candidates passing the kinematic cuts defined in Section 4.1 for the case of p_{Tile}, while dE/dx_{Pixel} is extracted from a sample fulfilling $10 < p_{T} < 20 \text{ GeV}$.

The sampling process is repeated many times to reduce fluctuations and the resulting estimates are normalised to match the number of events in data. The resulting background estimates can be seen in Fig. 3 for the pixel detector (requiring $dE/dx_{\text{Pixel}} > 1.8 \text{ MeV g}^{-1} \text{cm}^2$) and the tile calorimeter (requiring $p_{\text{Tile}} < 1$) separately. As can be seen from the figures, there is a good overall agreement between the distribution of candidates in data and the background estimate. The expected background at high mass is generally small.

Combining the pixel detector and the tile calorimeter mass estimates as described in Section 5 further reduces the background while retaining most of the expected signal. In contrast to the individual background estimates shown in Fig. 3, the combined background is obtained by combining one random momentum value with random measurements of both dE/dx_{Pixel} and p_{Tile}. The agreement between the distribution of candidates in data and the background estimate is good. This is seen in Table 2, which contains the event yields in the signal regions defined in Section 5 for the gluino signal, for the estimated background and for real data. The table also contains the means and the widths of the estimated mass distributions, which are used to determine the signal regions, as described in Section 5. Using combined data, there are no events containing a candidate with mass greater than 100 GeV. There are five candidates observed for the 100 GeV mass hypothesis, for which the mass window extends to values less than 100 GeV.

7. Systematic uncertainties and checks

A number of sources of systematic uncertainties are investigated. This section describes uncertainties arising due to the limited accuracy of theory calculations used in this work together with experimental uncertainties affecting the signal efficiency and background estimate.
Estimated by varying the missing transverse energy by the correlation in the simulation of the signal would lead to a change in the prediction of the signal yield to this smearing, the smearing is applied twice, doubling the smearing has a negligible effect on the predicted yields.

Only calorimeter cells measuring an energy above a threshold of 500 MeV are used in the calculation of β_{tile}. To study the impact of this threshold on the efficiency of the measurement, the tile calorimeter cell energy scale is varied by ±5% [36] leading to a small (≤ 1%) effect on the predicted yields of R-hadrons which fall into the individual signal regions. The predicted cell time distributions are smeared to match the data. To evaluate the sensitivity of the signal yield to this smearing, the smearing is applied twice, and the impact is seen to be less than 1%.

To estimate the effects of an imperfect description of the dE/dx_{Pixel} resolution by the simulation, individual values of dE/dx_{Pixel} are smeared according to a Gaussian function with width 5% [27]. Furthermore, to study possible effects due to a global dE/dx_{Pixel} scale uncertainty, the scale is shifted by ±3%. These variations are motivated by observed differences between data and Monte Carlo simulations and they change the predicted number of events passing the signal selections by less than 1%.

Adding the above errors in quadrature together with an 11% uncertainty from the luminosity measurement [37], a total systematic uncertainty of 17–20% on the signal event yield is estimated, where the larger uncertainty applies to the low-mass scenarios. The systematic uncertainty on the background estimate is found to be 30%. This arises from contributing uncertainties in the dE/dx_{Pixel} and β_{tile} distributions (25%) and the use of different methods to determine the absolute normalisation of the background prediction (15%).

As a final cross-check of the consistency of the analysis, the TRT was used. The TRT is a straw-based gas detector, and the time in which any signal exceeds the threshold is read out. This time provides an estimate of continuous energy loss and is usable.
for particle identification [38]. The measurement is similar to (but independent of) the pixel detector time-over-threshold measurement, on which \(dE/dx_{\text{Pixel}}\) is based. No deviations from backgrounds expectations are observed, and the TRT thus provides an additional confirmation that no signal was missed.

8. Exclusion limits

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities in TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN–CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

Acknowledgements

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We would also like to thank Torbjörn Sjöstrand and Tilman Plehn for their assistance in the preparation of the theory calculations used in this work.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DSNRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3–CNRS, CEA–DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRCES and FCT, Portugal; M E R Y S (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

References

Also at Institute of Particle Physics (IPP), Canada.

Also at Louisiana Tech University, Ruston, LA, United States.

Also at Department of Physics, California State University, Fresno, CA, United States.

Also at California Institute of Technology, Pasadena, CA, United States.

Also at Louisiana Tech University, Ruston, LA, United States.

Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at Manhattan College, New York, NY, United States.

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at High Energy Physics Group, Shandong University, Shandong, China.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.

Also at Departament of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

Also at IFJ Institute for Nuclear Physics, Krakow, Poland.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at DSM/IRFU, CEA Saclay, Gif-sur-Yvette, France.

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

Also at Department of Physics, Nanjing University, Jiangsu, China.

* Deceased.