Search for Massive Long-lived Highly Ionising Particles with the ATLAS Detector at the LHC

The ATLAS Collaboration

Abstract

A search is made for massive highly ionising particles with lifetimes in excess of 100 ns, with the ATLAS experiment at the Large Hadron Collider, using 3.1 pb$^{-1}$ of pp collision data taken at $\sqrt{s} = 7$ TeV. The signature of energy loss in the ATLAS inner detector and electromagnetic calorimeter is used. No such particles are found and limits on the production cross section for electric charges $6e \leq |q| \leq 17e$ and masses 200 GeV $\leq m \leq 1000$ GeV are set in the range 1–12 pb for different hypotheses on the production mechanism.

Keywords: high-energy collider experiment, long-lived particle, highly ionizing, new physics

1. Introduction

The observation of a massive long-lived highly ionising particle (HIP) possessing a large electric charge $|q| \gg e$, where e is the elementary charge, would represent striking evidence for physics beyond the Standard Model. Examples of putative particles which can give rise to HIP signatures include Q-balls [1], stable micro black-hole remnants [2], magnetic monopoles [3] and dyons [4]. Searches for HIPs are made in cosmic rays [5] and at colliders [3]; recent collider searches were performed at LEP [6–8] and the Tevatron [9–12]. Cross sections and event topologies associated with HIP production cannot be reliably predicted due to the fact that the coupling between a HIP and the photon is so strong that perturbative calculations are not possible. Therefore, search results at colliders are usually quoted as cross section limits in a range of charge and mass for different hypotheses on the production mechanism.

The ranges of HIP charge, mass and lifetime for which unambiguous conclusions can be drawn are determined by the chosen trigger and event selections. The choice of an electromagnetic trigger limits the phase space to HIPs which stop in the electromagnetic calorimeter of ATLAS. The search is optimised for data collected at relatively low instantaneous luminosities (up to 10^{33} cm$^{-2}$s$^{-1}$), for which a low (10 GeV) trigger transverse energy threshold is available. In the barrel region of the calorimeter, this gives access to energy depositions corresponding to HIPs with electric charges down to 6e. Standard electron reconstruction algorithms are used, which implies that tracks which bend like electrically charged particles are sought. Particles with magnetic charge, or electric charge above 17e, are not addressed here due to the bending along the beam axis in the case of a monopole, and due to effects from delta electrons and electron recombination in the active detector at the corresponding values of energy loss ($dE/dx > 2 \cdot 10^3$ MeV/cm). For such types of HIPs, more detailed studies are needed to assess and minimise the impact of these effects on the selection efficiency. The 1000 GeV upper bound in mass sensitivity is determined by trigger timing constraints, as a significantly heavier HIP (with charge 17e or lower) would be delayed by more than 12 ns with respect to $\beta = 1$ when it stops in the electromagnetic calorimeter (this corresponds to $\beta < 0.3$), and would thus risk being triggered in the next proton bunch crossing. The search is sensitive to HIP lifetimes larger than 100 ns since a particle which decays much earlier in the calorimeter (even after stopping) would spoil the signature of a narrow energy deposition.

1See Appendix for the list of collaboration members

Preprint submitted to Physics Letters B

April 14, 2011
2. The ATLAS Detector

The ATLAS detector \cite{14} is a multipurpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle \cite{15}. A thin superconducting solenoid magnet surrounding the inner part of the ATLAS detector produces a field of approximately 2 T along the beam axis.

Inner detector (ID) tracking is performed by silicon-based detectors and an outer tracker using straw tubes with particle identification capabilities based on transition radiation (Transition Radiation Tracker, TRT). The TRT is divided into barrel (covering the pseudorapidity range $|\eta| < 1.0$) and endcap ($0.8 < |\eta| < 2.0$) components. A track gives a typical number of straw hits of 36. At the front-end electronics of the TRT, discriminators are used to compare the signal against low and high thresholds. While the TRT has two hit threshold levels, there is no upper limit to the amount of ionisation in a straw which will lead to a signal \cite{16}, guaranteeing that highly ionising particles would not escape detection in the TRT. Rather, they would produce a large number of high-threshold (HT) hits along their trajectories. The amount of ionisation in a straw tube needed for a TRT HT hit is roughly equivalent to three times that expected from a minimum ionising particle.

Liquid-argon sampling electromagnetic (EM) calorimeters, which comprise accordion-shaped electrodes and lead absorbers, surround the ID. The EM calorimeter barrel ($|\eta| < 1.475$) is used in this search. It is segmented transversely and divided in three layers in depth, denoted first, second, and third layer, respectively. In front of the accordion calorimeter a thin presampler layer is used to correct for fluctuations of energy loss. The typical cell granularity ($\Delta \eta \times \Delta \phi$) of the EM barrel is 0.003×0.1 in the first layer and 0.025×0.025 in the second layer. The signal expected for a HIP in the considered charge range lies in a region in time and energy where the electronic response in EM calorimeter cells is well understood and does not saturate. The robustness of the EM calorimeter energy reconstruction has been studied in detail and pulse shape predictions are consistent with the measured signals \cite{17}.

The stopping power of a HIP in the ATLAS detector depends on its charge, mass and energy, as well as the material budget along its path. Details of the latter are given in Ref. \cite{18} in terms of number of radiation lengths X_0, as a function of depth and pseudorapidity. The integrated radiation length between the interaction point and the exit of the TRT is 0.5 X_0 at $\eta = 0$ and 1.5 X_0 at $|\eta| = 1.3$. The additional amount of material before the first layer of the EM calorimeter is 2.0 X_0 at $\eta = 0$ and 3.5 X_0 at $|\eta| = 1.3$. The thicknesses of the first, second and third EM layers are 4.5 X_0, 16.5 X_0 and 1.5 X_0 at $\eta = 0$ and 3 X_0, 20 X_0 and 5 X_0 at $|\eta| = 1.3$, respectively.

3. Simulated Event Samples

Signal events are generated with the PYTHIA Monte Carlo (MC) event generator \cite{19} according to the fermion pair production process: $p + p \rightarrow f + \bar{f} + X$. Ref. \cite{20} is used for the parton distributions of the proton. Direct pair production implies that the HIPs are not part of a jet and thus isolated. A Drell-Yan-like production mechanism, modified to take into account the mass of the HIP \cite{21}, is used to model the kinematic properties of the HIPs. Generated η distributions, as well as kinetic energy (E_{kin}) spectra in the central region ($|\eta| < 1.35$), are shown in Figure 1 for the three mass points considered in this search.

An ATLAS detector simulation \cite{22} based on GEANT-4 \cite{23} is used, where the particle interactions include secondary ionisation by delta electrons in addition to the standard ionisation process based on the Bethe-Bloch formula. A correction for electron-ion recombination effects in the EM calorimeter (Birks’ correction) is applied, with typical visible energy fractions between 0.2 and 0.5 for the signal particles considered. Effects of delays are simulated, except for the ability to trigger slow-moving particles within the proton bunch crossing time, which is considered separately as a systematic uncertainty (see Section 6). Samples of approximately 20000 events are produced for HIPs with masses of 200, 500 and 1000 GeV. For each mass point, HIPs with charges 6e, 10e and 17e are simulated.

A data-driven method is used in this work to estimate back-
grounds surviving the final selections (see Section 4.2). However, in order to demonstrate that the distributions of the relevant observables are understood, a sample of simulated background events is used. The background sample, generated with Pythia [19] and labeled “Standard Model”, consists mostly of QCD events in which the hard subprocess is a strong 2-to-2 process with a matrix element transverse momentum cut-off of 15 GeV, but also includes contributions from heavy quark and vector boson production. A true transverse energy larger than 17 GeV in a typical first level trigger tower is also required. This sample contains \(4 \cdot 10^7\) events and corresponds roughly to an integrated luminosity of 0.8 pb\(^{-1}\).

4. Trigger and Event Selection

The collected data sample corresponds to an integrated luminosity of 3.1 \(\pm\) 0.3 pb\(^{-1}\), using a first level trigger based on energy deposits in the calorimeters. At the first level of the trigger, so-called trigger towers with dimension \(\Delta \eta \times \Delta \phi = 0.1 \times 0.1\) are defined. In each trigger tower the cells of the electromagnetic or hadronic calorimeter are summed. EM clusters with fixed size \(\Delta \eta \times \Delta \phi = 0.2 \times 0.2\) are sought and are retained if the total transverse energy \(E_T\) in an adjacent pair of their four trigger towers is above 5 GeV. Further electron-like higher level trigger requirements are imposed on the candidate, including \(E_T > 10\) GeV, a matching to a track in the ID and a veto on hadronic leakage [24]. The efficiency of this trigger for the data under consideration is measured to be \((94.0 \pm 1.5\%)\) for electrons with \(E_T > 15\) GeV and is well described by the simulation. The simulation predicts that a highly charged particle which stops in the EM barrel would be triggered with a similar efficiency or higher.

Offline electron candidates have cluster sizes of \(\Delta \eta \times \Delta \phi = 0.075 \times 0.175\) in the EM barrel, with a matched track in a window of \(\Delta \eta \times \Delta \phi = 0.05 \times 0.1\) amongst reconstructed tracks with transverse momentum larger than 0.5 GeV. Identification requirements corresponding to “medium” electrons [25], implying track and shower shape quality cuts, are applied to the candidates. These cuts filter out backgrounds but have a negligible impact on the signal, for which the cluster width is much narrower than for typical electrons. The cluster energy is estimated correcting for the energy deposited outside the active calorimeter regions, assuming an EM shower.

Further offline selections on the cluster transverse energy \((E_T > 15\) GeV) and pseudorapidity \((|\eta| < 1.35)\) are imposed. The \(E_T\) selection guarantees that the trigger efficiency is higher than 94\% for the objects under study. The restriction of \(|\eta| < 1.35\) excludes the transition region between the EM calorimeter barrel and endcap, reducing the probability for backgrounds to fake a narrow energy deposition.

4.1. Selection Cuts

A loose selection based on TRT and EM calorimeter information is also imposed on the candidates to ensure that the quality of the track and cluster associated to the electron-like object is good enough to ensure the robustness of the HIP selection variables, and to provide a data sample with which to estimate the background rate. Only candidates with more than 10 TRT hits are retained. In addition to the \(E_T > 15\) GeV cut for the EM cluster associated with the candidate, a significant fraction of the total cluster energy is required to be contained in six calorimeter cells among the first and second EM layers. This is done by requiring the summed energy in the three most energetic cells in each of the first and second layers to be greater than 2 and 4 GeV, respectively. Following these selections, 137503 candidates remain in the data.

Two sets of observables are used in the final selection. The ID-based observable is the fraction, \(f_{HT}\), of TRT hits on the track which pass the high threshold. The calorimeter-based discriminants are the fractions of energies outside of the three most energetic cells associated to a selected EM cluster, in the first and second EM calorimeter layers: \(w_1\) and \(w_2\).

The \(f_{HT}\) distribution for loosely selected candidates is shown in Figure 2. The data extend up to \(f_{HT} \sim 0.8\). The prediction of the signal simulation for a HIP of mass 500 GeV and charge \(10e\) is also shown. It peaks at \(f_{HT} \sim 1\) and has a small tail extending into the Standard Model region.

The distributions of \(w_1\) and \(w_2\) also provide good discrimination between signal and background, as shown in Figure 3. For a signal, energy is deposited only in the few cells along the particle trajectory (as opposed to backgrounds which induce showerers in the EM calorimeter) and the distributions peak around zero for both variables. The shapes of the measured distributions are well described by the background simulation. A faint double-peak structure is visible in data and in background simulations for the \(f_{HT}\), \(w_1\) and \(w_2\) distributions in Figures 2 and 3 where the main peak (closest to the signal) corresponds to electrons and the secondary peak corresponds to hadrons which fake the electron identification signature.

Finally, the following HIP selection is made: \(f_{HT} > 0.65\), \(w_1 < 0.20\) and \(w_2 < 0.15\). For signal particles, these cuts reject only candidates in the tails of the distributions, and varying them has a minor impact on the efficiency; this feature is
N resonance. Even in the presence of a signal, these values were chosen to yield a very small (≪ 1 event) expected background (see Section 4.2) while retaining a high (~ 90%) efficiency for the signal. No candidates in data or in simulated Standard Model events pass this selection.

4.2. Data-driven Background Estimation

A data-driven method is used to quantify the expected background yield after the HIP selection. Potential backgrounds consist mainly of electrons. For Standard Model candidates, the ID and calorimeter observables are correlated in a way that further suppresses the backgrounds (see Figure 4). The background estimation assumes that f_{HT} is uncorrelated with w_1 and w_2 and is thus conservative.

The yield of particle candidates passing the loose selection $N_{\text{loose}} = 137503$ can be divided into the following: N_0, N_1, N_{HT}, and N_{bg}, which represent the number of candidates which satisfy both of the selections, neither of the selections, only the f_{HT} selection, and only the w_1 and w_2 selections taken together, respectively. Even in the presence of a signal, N_1, N_{HT}, and N_{bg} would be dominantly composed of background events. The probability of a background candidate passing the TRT requirement is then P_{TRT} and the probability to pass the calorimeter requirements is $P_w = P_{\text{HT}}$, leading to an expectation of the number of background candidates entering the signal region: $N_{\text{bg}} = N_{\text{loose}}P_{\text{TRT}}P_w$. The data sample yields $N_0 = 0$, $N_1 = 137342$, $N_{\text{HT}} = 18$ and $N_{\text{bg}} = 143$, leading to $P_{\text{HT}} = (1.3 \pm 0.3) \times 10^{-4}$ and $P_w = (1.0 \pm 0.1) \times 10^{-3}$. The expected number of background candidates surviving the selection, and thereby the expected number of background events, is thus $N_{\text{bg}} = 0.019 \pm 0.005$. The quoted uncertainty is statistical.

5. Signal Selection Efficiency

5.1. Efficiencies in Acceptance Kinematic Regions

The probability to retain a signal event can be factorised in two parts: acceptance (probability for a HIP in a region where the detector is sensitive) and efficiency (probability for this HIP to pass the selection cuts). The acceptance is defined here as the probability that at least one signal particle will be in the range $|q| < 1.35$ and stop in the second or third layer of the EM calorimeter. If this condition is satisfied, the simulation predicts a high probability to trigger on, reconstruct and select the event. This corresponds to the dark region in Figure 5 which shows the predicted selection efficiency mapped as a function of the initial HIP pseudorapidity and kinetic energy, in the case of $|q| = 10e$ and $m = 500$ GeV. Such acceptance kinematic regions can be parametrised with three values defining three corners of a parallelogram. These parameters are summarised in Table 1. For HIPs produced inside these regions, the candidate selection efficiency is flat within 10% and takes values between 0.5 and 0.9 depending on the charge and mass (see Table 2). For $|q| = 17e$, the main source of inefficiency is the requirement on the number of TRT HT hits, which contributes up to 20% signal
loss. This is largely due to the presence of track segments from delta electrons, which have a non-negligible probability to be chosen by the standard electron track matching algorithm. For low charges, inefficiencies are dominated by the cluster E_T cut, typically accounting for ~ 6% loss. Other contributions, like trigger, electron reconstruction, and electron identification, can each cause 1 – 6% additional inefficiency.

5.2. Efficiencies for Drell-Yan Kinematics

The estimated fractions of signal events where at least one candidate passes the final selection, assuming they are produced with Drell-Yan kinematics, are shown in Table 3 for the values of charge and mass considered in this search. The dominant source of loss (70 – 85% loss) is from the kinematic acceptance, i.e., the production of HIPs with $|q| > 1.35$, as well as their stopping before they reach the second layer of the EM calorimeter, or after they reach the first layer of the hadronic calorimeter. The relative contributions from these various types of acceptance loss depend on mass and charge, as well as the kinematics of the assumed production model. The Drell-Yan production model implies that the fraction of HIPs produced in the acceptance region of pseudorapidity $|\eta| < 1.35$ is larger with increasing mass (see Figure 1). Also, with the assumed energy spectra (bottom plot in Figure 1), the acceptance is highest for intermediate charges ($|q| = 10e$), since HIPs with low charges tend to punch through the EM calorimeter and HIPs with high charges tend to stop before reaching it.

Table 1: Kinetic energies (in GeV) defining the acceptance kinematic ranges for HIPs with the masses and electric charges considered in this search. The three columns correspond to the lower left, lower right, and upper left corners of parallelograms in the $|\eta|, E_{kin}$ plane.

| $|q|$ | m [GeV] | $E_{\text{min}}^{\text{kin}}$ ($|q| = 0$) | $E_{\text{min}}^{\text{kin}}$ ($|q| = 1.35$) | $E_{\text{max}}^{\text{kin}}$ ($|q| = 0$) |
|------|----------|----------------|----------------|----------------|
| 6e | 200 | 40 | 50 | 50 |
| 6e | 500 | 50 | 70 | 70 |
| 6e | 1000 | 60 | 130 | 80 |
| 10e | 200 | 50 | 80 | 90 |
| 10e | 500 | 80 | 110 | 130 |
| 10e | 1000 | 110 | 150 | 180 |
| 17e | 200 | 100 | 150 | 190 |
| 17e | 500 | 150 | 190 | 260 |
| 17e | 1000 | 190 | 240 | 350 |

Table 2: Expected fractions of HIP candidates passing the final selection, assuming they are isolated and produced inside the acceptance regions defined by the values in Table 1. Uncertainties due to MC statistics are quoted; other systematic uncertainties are discussed in Section 6.

| m [GeV] | $|q| = 6e$ | $|q| = 10e$ | $|q| = 17e$ |
|-----------|-----------|-----------|-----------|
| 200 | 0.822 ± 0.026 | 0.820 ± 0.015 | 0.484 ± 0.012 |
| 500 | 0.868 ± 0.021 | 0.856 ± 0.014 | 0.617 ± 0.011 |
| 1000 | 0.558 ± 0.019 | 0.858 ± 0.012 | 0.700 ± 0.012 |

Table 3: Expected fractions of signal events passing the final selection, assuming Drell-Yan kinematics. Uncertainties due to MC statistics are quoted; other systematic uncertainties are discussed in Section 6.

6. Systematic Uncertainties

The major sources of systematic uncertainties affecting the efficiency estimation are summarised below. These mainly concern possible imperfections in the description of HIPs in the detector by the simulation.

- The recombination of electrons and ions in the sampling region of the EM calorimeter affects the measured current and thus the total visible energy. Recombination effects become larger with increasing dE/dx. In the ATLAS simulation, this is parametrised by Birks’ law [26]. To estimate the uncertainty associated with the approximate modeling of recombination effects, predictions from the ATLAS implementation of Birks’ correction [27] are compared to existing data of heavy ions punching through a layer of liquid argon [28–30]. In the range $2 \cdot 10^2$ MeV/cm < $dE/dx < 2 \cdot 10^3$ MeV/cm, which corresponds to typical HIP energy losses in the EM calorimeter for the charges and masses under consideration, the uncertainty in the simulated visible energy fraction is ±15%. This introduces between 4% and 23% uncertainty in the signal selection efficiency. The impact is largest for charge 6e, for which a lower visible energy would be more likely to push the candidate below the 15 GeV cluster E_T threshold.

- The fraction of HIPs which stop in the detector prior to reaching the EM calorimeter is affected by the assumed
amount of material in the Geant-4 simulation. Varying the material density within the assumed uncertainty range ($\pm 10\%$), independently in the ID and EM calorimeter volumes, leads to a 6\% uncertainty in signal acceptance.

- The modeling of inactive or inefficient EM calorimeter regions in the simulation results in a 2\% uncertainty in the signal efficiency.

- Cross-talk effects between EM calorimeter cells affect the W_1 and W_2 variables and this may not be accurately described by the simulation for large energy depositions per cell. The resulting uncertainty in signal efficiency is 2\%.

- Secondary ionisation by delta electrons affects the track reconstruction and the calorimeter energy output. The amount of delta electrons in ATLAS detectors as described in Geant-4 depends on the cutoff parameter (the radius beyond which delta electrons are considered separate from the mother particle). Varying this parameter results in a 3\% uncertainty in the signal efficiency.

- For clusters delayed by more than 10 ns with respect to the expected arrival time of a highly relativistic particle, which corresponds to $\beta < 0.37$, there is a significant chance that the event is triggered in the next bunch crossing by the first level EM trigger. In most of the mass and charge range considered in this search, more than 99\% of the particles which are energetic enough to reach the EM calorimeter and pass the event selection are in the high-efficiency range $\beta > 0.4$. The only exception is $|\eta| = 6\pi$ and $m = 1000$ GeV, for which the β distribution after selection peaks between 0.32 and 0.47. The trigger efficiency loss is corrected for, resulting in an additional 25\% uncertainty for this particular case.

- Uncertainties in the choice of parametrisation for the parton density functions (pdfs) of the proton have an impact on the event kinematics. To test this effect, events were generated (see Section 3) with 7 different pdfs from various sources [21,32-35]. Assuming that acceptance variations due to the choice of pdf are Gaussian, the resulting relative uncertainty in the acceptance is 3\%.

- The relative uncertainty in efficiency due to MC statistics is of the order of 2\%.

Other effects, like event pile-up and electron pick-up by positively charged particles, have been investigated and found to be negligible. Efficiency systematics are dominated by Birks’ correction. The relative uncertainties in the signal selection efficiencies (Tables 2 and 3), obtained by adding all effects in quadrature, are shown in Table 4.

The systematic uncertainty in the absolute integrated luminosity is 11\% [34].

The only exception is $|\eta| = 6\pi$ and $m = 1000$ GeV, for which the β distribution after selection peaks between 0.32 and 0.47. The trigger efficiency loss is corrected for, resulting in an additional 25\% uncertainty for this particular case.

- Cross-talk effects between EM calorimeter cells affect the W_1 and W_2 variables and this may not be accurately described by the simulation for large energy depositions per cell. The resulting uncertainty in signal efficiency is 2\%.

- Secondary ionisation by delta electrons affects the track reconstruction and the calorimeter energy output. The amount of delta electrons in ATLAS detectors as described in Geant-4 depends on the cutoff parameter (the radius beyond which delta electrons are considered separate from the mother particle). Varying this parameter results in a 3\% uncertainty in the signal efficiency.

- For clusters delayed by more than 10 ns with respect to the expected arrival time of a highly relativistic particle, which corresponds to $\beta < 0.37$, there is a significant chance that the event is triggered in the next bunch crossing by the first level EM trigger. In most of the mass and charge range considered in this search, more than 99\% of the particles which are energetic enough to reach the EM calorimeter and pass the event selection are in the high-efficiency range $\beta > 0.4$. The only exception is $|\eta| = 6\pi$ and $m = 1000$ GeV, for which the β distribution after selection peaks between 0.32 and 0.47. The trigger efficiency loss is corrected for, resulting in an additional 25\% uncertainty for this particular case.

- Uncertainties in the choice of parametrisation for the parton density functions (pdfs) of the proton have an impact on the event kinematics. To test this effect, events were generated (see Section 3) with 7 different pdfs from various sources [21,32-35]. Assuming that acceptance variations due to the choice of pdf are Gaussian, the resulting relative uncertainty in the acceptance is 3\%.

- The relative uncertainty in efficiency due to MC statistics is of the order of 2\%.

Other effects, like event pile-up and electron pick-up by positively charged particles, have been investigated and found to be negligible. Efficiency systematics are dominated by Birks’ correction. The relative uncertainties in the signal selection efficiencies (Tables 2 and 3), obtained by adding all effects in quadrature, are shown in Table 4.

The systematic uncertainty in the absolute integrated luminosity is 11\% [34].

| m [GeV] | $|\eta| = 6\pi$ | $|\eta| = 10\pi$ | $|\eta| = 17\pi$ |
|----------|----------------|----------------|----------------|
| 200 | 1.4 | 1.2 | 2.1 |
| 500 | 1.2 | 1.2 | 1.6 |
| 1000 | 2.2 | 1.2 | 1.5 |

Table 4: Inclusive HIP cross section upper limits (in pb) at 95\% confidence level for isolated long-lived massive particles with high electric charges produced in regions of pseudorapidity and kinetic energy as defined in Table 6. Efficiencies in Table 2 and uncertainties in Table 3 were used in the cross section limit calculation.

7. Upper Limit on the Cross Section

A very low ($\ll 1$ event) background yield is expected and no events are observed to pass the selection. Knowing the integrated luminosity (3.1 pb$^{-1}$) and the selection efficiency for various model assumptions (Tables 2 and 3), cross section limits are obtained. This is done using a Bayesian statistical approach with a uniform prior for the signal and the standard assumption that the uncertainties in integrated luminosity (11\%) and efficiency (Table 3) are Gaussian and independent. The limits are presented in Table 5 (for a particle produced in the acceptance kinematic region defined by Table 4) and in Table 6 (assuming Drell-Yan kinematics). These limits can be approximately interpolated to intermediate values of mass and charge. Also, the limits quoted in Table 5 can be used to extract cross section limits for any given model of kinematics by correcting for the acceptance (fraction of events with at least one generated HIP in the ranges defined by Table 4). Such a procedure yields conservative limits thanks to the fact that candidates beyond the sharp edges of the acceptance regions defined in Table 4 can also be accepted.

8. Summary

A search has been made for HIPs with lifetimes in excess of 100 ns produced in the ATLAS detector at the LHC using 3.1 pb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV. The signature of

| m [GeV] | $|\eta| = 6\pi$ | $|\eta| = 10\pi$ | $|\eta| = 17\pi$ |
|----------|----------------|----------------|----------------|
| 200 | 11.5 | 5.9 | 9.1 |
| 500 | 7.2 | 4.3 | 5.3 |
| 1000 | 9.3 | 3.4 | 4.3 |

Table 5: Inclusive HIP cross section upper limits (in pb) at 95\% confidence level for isolated long-lived massive particles with high electric charges produced in regions of pseudorapidity and kinetic energy as defined in Table 6. Efficiencies in Table 2 and uncertainties in Table 3 were used in the cross section limit calculation.
high ionisation in an inner detector track matched to a narrow calorimeter cluster has been used. Upper cross section limits between 1.2 pb and 11.5 pb have been extracted for HIPs with electric charges between 6e and 17e and masses between 200 GeV and 1000 GeV, under two kinematics assumptions: a generic isolated HIP in a fiducial range of pseudorapidity and kinetic energy, or a Drell-Yan fermion pair production mechanism. HIP mass ranges above 800 GeV are probed for a generic isolated HIP in a fiducial range of pseudorapidity and kinetic energy, or a Drell-Yan fermion pair production mechanism. HIP mass ranges above 800 GeV are probed for.

References

[15] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2).
22 Brandeis University, Department of Physics, MS057, 415 South Street, Waltham, MA 02454, United States of America
23 Universidade Federal do Rio De Janeiro, COPPE/EE/IF (a), Caixa Postal 68528, Ilha do Fundao, BR - 21945-970 Rio de Janeiro; (b)Universidade de Sao Paulo, Instituto de Fisica, R.do Matao Trav. R.187, Sao Paulo - SP, 05508 - 900, Brazil
24 Brookhaven National Laboratory, Physics Department, Bldg. 510A, Upton, NY 11973, United States of America
25 National Institute of Physics and Nuclear Engineering (a,b)Bucharest-Magurele, Str. Atominstitolul 407, P.O. Box MG-6, R-077125, Romania; University Politehnica Bucharest (b), Rectorat - AN 001, 313 Splaiul Independentei, sector 6, 060042 Bucuresti; West University (a,b) in Timisoara, Bd. Vasile Parvan 4, Timisoara, Romania
26 Universidad de Buenos Aires, FCEyN, Dto. Fisica, Pab I - C. Universidad, 1428 Buenos Aires, Argentina
27 University of Cambridge, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
28 Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada
29 CERN, CH - 1211 Geneva 23, Switzerland
30 University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637, United States of America
31 Pontificia Universidad Católica de Chile, Facultad de Física, Departamento de Física (a), Avda. Vicuña Mackenna 4860, Santiago, Universidad Técnica Federico Santa María, Departamento de Física (b), Avda. España 1680, Casilla 110-V, Valparaíso, Chile
32 Institute of High Energy Physics, Chinese Academy of Sciences (a), P.O. Box 918, 19 Yuquan Road, Shijing Shan District, CN - Beijing 100049; University of Science & Technology of China (USTC), Department of Modern Physics (b), Hefei, CN - Anhui 230026; Nanjing University, Department of Physics (c), Nanjing, CN - Jiangsu 210093; Shandong University, High Energy Physics Group (d), Jinan, CN - Shandong 250100, China
33 Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, FR - 63177 Aubiere Cedex, France
34 Columbia University, Nevis Laboratory, 136 So. Broadway, Irvington, NY 10533, United States of America
35 University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, DK - 2100 Kobenhavn 0, Denmark
36 INFN Gruppo Collegato di Cosenza (a); Università della Calabria, Dipartimento di Fisica (b), IT-87036 Arcavacata di Rende, Italy
37 Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology, (FPACS, AGH-UST), al. Mickiewicza 30, PL-30059 Cracow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL - 31342 Krakow, Poland
39 Southern Methodist University, Physics Department, 106 Fondren Science Building, Dallas, TX 75275-0175, United States of America
40 University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America
41 DESY, Notkestr. 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany
42 TU Dortmund, Experimentelle Physik IV, DE - 44221 Dortmund, Germany
43 Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany
44 Duke University, Department of Physics, Durham, NC 27708, United States of America
45 University of Edinburgh, School of Physics & Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
46 Fachhochschule Wiener Neustadt; Johannes Gutenbergstrasse 3 AT - 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, via Enrico Fermi 40, IT-00044 Frascati, Italy
48 Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Hermann-Herder Str. 3, D - 79104 Freiburg i.Br., Germany
49 Université de Genève, Section de Physique, 24 rue Ernest Ansermet, CH - 1211 Genève 4, Switzerland
50 INFN Sezione di Genova (a); Università di Genova, Dipartimento di Fisica (a), via Dodecaneso 33, IT - 16146 Genova, Italy
51 Institute of Physics of the Georgian Academy of Sciences, 6 Tamarashvili St., GE - 380077 Tbilisi, Tbilisi State University, HEP Institute, University St. 9, GE - 380086 Tbilisi, Georgia
52 Justus-Liebig-Universität Giessen, II Physikalisches Institut, Heinrich-Buff Ring 16, D-35392 Giessen, Germany
53 University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ, United Kingdom
54 Georg-August-Universität, II. Physikalisches Institut, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier, CNRS-IN2P3, INPG, Grenoble, France, France
56 Hampton University, Department of Physics, Hampton, VA 23668, United States of America
57 Harvard University, Laboratory for Particle Physics and Cosmology, 18 Hammond Street, Cambridge, MA 02138, United States of America
58 Ruprecht-Karls-Universität Heidelberg: Kirchhoff-Institut für Physik (a,b), Im Neuenheimer Feld 227, D-69120 Heidelberg; Physikalisches Institut (c), Philosophenweg 12, D-69120 Heidelberg; ZITI Ruprecht-Karls-University Heidelberg (c), Lehrstuhl für Informatik V, B6, 23-29; DE - 68131 Mannheim, Germany
59 Hiroshima University, Faculty of Science, 1-3-1 Kagamiyama, Higashihiroshima-shi, JP - Hiroshima 739-8526, Japan
60 Hiroshima Institute of Technology, Faculty of Applied Information Science, 2-1-1 Miyake Saeki-ku, Hiroshima-shi, JP - Hiroshima 731-5193, Japan
61 Indiana University, Department of Physics, Swain Hall West 117, Bloomington, IN 47405-7105, United States of America
62 Institut für Astro- und Teilchenphysik, Technikerstrasse 25, A - 6020 Innsbruck, Austria
63 University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242-1479, United States of America
64 Iowa State University, Department of Physics and Astronomy, Ames High Energy Physics Group, Ames, IA 50011-3160, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, RU-141980 Moscow Region, Russia, Russia
66 KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801, Japan
67 Kobe University, Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, JP Kobe 657-8501, Japan
68 Kyoto University, Faculty of Science, Oiwake-cho, Kitashirakawa, Sakyou-ku, Kyoto-shi, JP - Kyoto 606-8502, Japan
69 Kyoto University of Education, 1 Fukakusa, Fujimori, fushimi-ku, Kyoto-shi, JP - Kyoto 612-8522, Japan
70 Universidad Nacional de La Plata, FCE, Departamento de Física, IFN (CONICET-UNLP), C.C. 67, 1900 La Plata, Argentina
71 Lancaster University, Physics Department, Lancaster LA1 4YB, United Kingdom
72 INFN Sezione di Lecco\cite{62}; Università del Salento, Dipartimento di Fisica\cite{63}\(\text{Via Arnesano IT - 73100 Lecce, Italy}\)
73 University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX, United Kingdom
74 Jožef Stefan Institute and University of Ljubljana, Department of Physics, SI-1000 Ljubljana, Slovenia
75 Queen Mary University of London, Department of Physics, Mile End Road, London E1 4NS, United Kingdom
76 Royal Holloway, University of London, Department of Physics, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom
77 University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC, Université Paris Diderot, CNRS/IN2P3, 4 place Jussieu, FR - 75252 Paris Cedex 05, France
79 Fysiska institutionen, Lunds universitet, Box 118, SE - 221 00 Lund, Sweden
80 Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Física Teorica, ES - 28049 Madrid, Spain
81 Universität Mainz, Institut für Physik, Staudinger Weg 7, DE - 55099 Mainz, Germany
82 University of Manchester, School of Physics and Astronomy, Manchester M13 9PL, United Kingdom
83 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
84 University of Massachusetts, Department of Physics, 710 North Pleasant Street, Amherst, MA 01003, United States of America
85 McGill University, High Energy Physics Group, 3600 University Street, Montreal, Quebec H3A 2T8, Canada
86 University of Melbourne, School of Physics, AU - Parkville, Victoria 3010, Australia
87 The University of Michigan, Department of Physics, 2477 Randall Laboratory, 500 East University, Ann Arbor, MI 48109-1120, United States of America
88 Michigan State University, Department of Physics and Astronomy, High Energy Physics Group, East Lansing, MI 48824-2320, United States of America
89 INFN Sezione di Milano\cite{90}; Università di Milano, Dipartimento di Fisica\cite{91}, via Celoria 16, IT - 20133 Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue 68, Minsk 220072, Republic of Belarus
91 National Scientific & Educational Centre for Particle & High Energy Physics, NC PHEP BSU, M. Bogdanovich St. 153, Minsk 220040, Republic of Belarus
92 Massachusetts Institute of Technology, Department of Physics, Room 24-516, Cambridge, MA 02139, United States of America
93 University of Montreal, Group of Particle Physics, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Leninsky pr. 53, RU - 117 924 Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), B. Cheremushkinskaya ul. 25, RU 117 218 Moscow, Russia
96 Moscow Engineering & Physics Institute (MEPhI), Kashirskoe Shosse 31, RU - 115409 Moscow, Russia
97 Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (MSU SINP), 1(2), Leninsky gory, GSP-1, Moscow 119991 Russian Federation, Russia
98 Ludwig-Maximilians-Universität München, Fakultät für Physik, Am Coulombwall 1, DE - 85748 Garching, Germany
99 Max-Planck-Institut für Physik, (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
100 Nagasaki Institute of Applied Science, 536 Aba-machi, JP Nagasaki 851-0193, Japan
101 Nagoya University, Graduate School of Science, Furo-Chou, Chikusa-ku, Nagoya, 464-8602, Japan
102 INFN Sezione di Napoli\cite{103}; Università di Napoli, Dipartimento di Scienze Fisiche\cite{104}, Complesso Universitario di Monte Sant’Angelo, via Cintia, IT - 80126 Napoli, Italy
103 University of New Mexico, Department of Physics and Astronomy, MSC07 4220, Albuquerque, NM 87131 USA, United States of America
104 Radboud University Nijmegen/NIKHEF, Department of Experimental High Energy Physics, Heyendaalseweg 135, NL-6525 AJ, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics, and University of Amsterdam, Science Park 105, 1098 XG Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, LaTourette Hall Normal Road, DeKalb, IL 60115, United States of America
107 Budker Institute of Nuclear Physics (BINP), RU - Novosibirsk 630 090, Russia
108 New York University, Department of Physics, 4 Washington Place, New York NY 10003, USA, United States of America
ac Also at LPNHE, Paris, France
ad Also at Nanjing University, Nanjing Jiangsu, China
* Deceased