Search for first generation leptoquark pair production in the electron + missing energy + jets final state

(The D0 Collaboration*)

*Universidad de Buenos Aires, Buenos Aires, Argentina
LAPEX, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Universidade Federal do ABC, Santo André, Brazil
Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada
University of Science and Technology of China, Hefei, People’s Republic of China
Universidad de los Andes, Bogotá, Colombia
Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Universidad San Francisco de Quito, Quito, Ecuador
LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
CEA, Irfu, SPP, Saclay, France
IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
Physikalisches Institut, Universität Freiburg, Freiburg, Germany
II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
Institut für Physik, Universität Mainz, Mainz, Germany
Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Panjab University, Chandigarh, India
Delhi University, Delhi, India
Tata Institute of Fundamental Research, Mumbai, India
University College Dublin, Dublin, Ireland
Korea Detector Laboratory, Korea University, Seoul, Korea
CINVESTAV, Mexico City, Mexico
Nikhef, Science Park, Amsterdam, the Netherlands
Radboud University Nijmegen, Nijmegen, the Netherlands
Joint Institute for Nuclear Research, Dubna, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
Moscow Nuclear Physics Institute, St. Petersburg, Russia
Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden
Lancaster University, Lancaster LA1 4YB, United Kingdom
Imperial College London, London SW7 2AZ, United Kingdom
The University of Manchester, Manchester M13 9PL, United Kingdom
University of Arizona, Tucson, Arizona 85721, USA
University of California Riverside, Riverside, California 92521, USA
Florida State University, Tallahassee, Florida 32306, USA
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
University of Illinois at Chicago, Chicago, Illinois 60607, USA
Northern Illinois University, DeKalb, Illinois 60115, USA
Because of the limitations of the standard model (SM), several extensions have been proposed, among them supersymmetry (SUSY), grand unified theories, and string theory. Many of these extensions predict the existence of particles that directly connect the lepton and quark sectors. By combining leptons and quarks in multiplets of a larger symmetry group, they are expected to interact through new mediating bosons called leptoquarks (LQ) \(^1\). Leptoquarks can be either scalar or vector fields. This Letter will focus on the search for scalar leptoquarks in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV. In the channel \(LQ\rightarrow eq_uq\) (where \(q, q'\) are u or d quarks, no significant excess of data over background is observed, and we set a 95\% C.L. lower limit of 326 GeV on the leptoquark mass, assuming equal probabilities of leptoquark decays to \(eq\) and \(\nu_eq'\).

PACS numbers: 13.85.Rm, 14.80.Sv

We present a search for the pair production of first generation scalar leptoquarks (LQ) in data corresponding to an integrated luminosity of 5.4 fb\(^{-1}\) collected with the D0 detector at the Fermilab Tevatron Collider in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV. In the channel \(LQ\rightarrow eq_uq\), where \(q, q'\) are u or d quarks, no significant excess of data over background is observed, and we set a 95\% C.L. lower limit of 326 GeV on the leptoquark mass, assuming equal probabilities of leptoquark decays to \(eq\) and \(\nu_eq'\).

Because of the limitations of the standard model (SM), several extensions have been proposed, among them supersymmetry (SUSY), grand unified theories, and string theory. Many of these extensions predict the existence of particles that directly connect the lepton and quark sectors. By combining leptons and quarks in multiplets of a larger symmetry group, they are expected to interact through new mediating bosons called leptoquarks (LQ) \(^1\). Leptoquarks can be either scalar or vector fields. This Letter will focus on the search for scalar leptoquarks, and in the following we will not distinguish particles from antiparticles. Because effective models are assumed for experimental searches for leptoquarks, our search is independent of specific extensions of the SM.

In \(p\bar{p}\) collisions such as at the Tevatron Collider, leptoquarks can be produced in leptoquark-antileptoquark pairs. Leptoquark pair production can occur via both quark-antiquark annihilation and gluon-gluon fusion, although quark-antiquark annihilation is dominant. The production cross section for scalar leptoquarks depends only on the strong coupling constant and on the leptoquark mass, and is known at next-to-leading order (NLO) \(^3\).

Once produced, leptoquarks can decay to two final states: \(lq\) and \(\nu_eq'\) (where \(l = e, \mu, \) or \(\tau\)). It is assumed that in the low energy limit there is no intergenerational mixing. For first generation LQ pairs the final state will contain a pair of leptons (\(e\) or \(\nu_e\)) and a pair of quarks (\(u\) or \(d\)). In this Letter, the case in which one leptoquark decays to \(eq\) and the other to \(\nu_eq'\) is considered (charge conjugate states are assumed in the Letter).

We define \(\beta\) to be the branching ratio of a first genera-
tion leptoquark to decay to $eq$. Then the probability for a leptoquark to decay to $\nu_eq'$ is $(1 - \beta)$, and the probability for a leptoquark pair to decay to the final state $eqv_qq'$ is $BR(LQ\ell \ell' \rightarrow eqv_qq') = 2\beta(1 - \beta)$. Thus, the probability for the final state $eqv_qq'$ is maximized when $\beta = 0.5$.

Limits on the production of first generation leptoquarks have been reported by the DELPHI [4], OPAL [5], H1 [6], ZEUS [7], CDF [8], and D0 [9] Collaborations. Recently, CMS [11, 12], and ATLAS [13] published the first searches for scalar leptoquark pair production at the CERN LHC.

The D0 detector consists of tracking, calorimeter, and muon systems [14, 16]. The central-tracking system consists of a silicon microstrip tracker and a central fiber tracker, both located within a 2 T superconducting solenoid. A liquid-argon and uranium calorimeter consists of a central section (pseudorapidity $|\eta| < 1.1$ [17]) and two end sections ($1.5 < |\eta| < 4.2$). The calorimeters have fine transverse and longitudinal segmentation with three principal layers identified as electromagnetic, and fine and coarse hadronic. An outer muon system ($|\eta| < 2$) consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T toroids, followed by two similar layers after the toroids [13]. Data were collected with the D0 detector at the Fermilab Tevatron $pp$ Collider operating at $\sqrt{s} = 1.96$ TeV between August 2002 and June 2009, and correspond to an integrated luminosity of $5.4$ fb$^{-1}$.

An electron is identified from energy deposits in the electromagnetic calorimeter that are consistent with the shower development expected for an electron and have a matching track extrapolated from the central tracker.

Jets are reconstructed using a midpoint cone algorithm, with a cone size of 0.5 [19]. The jet energy is corrected to the particle level using jet energy scale corrections determined from data [20]. The missing transverse energy ($E_T$) is reconstructed from all the cells of the electromagnetic and hadronic calorimeters, except for the coarse hadronic sector where a noise-reduction algorithm is applied. Additional corrections are then applied for all identified objects including jets, electrons, and muons.

Events must satisfy at least one trigger from the single-electron and electron+jets suites of triggers. For all data samples, trigger objects are required to match the reconstructed objects. The trigger efficiencies are measured in data and parameterized for specific lepton and jet identification criteria.

Scalar leptoquark pair Monte Carlo (MC) samples are generated using PYTHIA [21] with CTEQ6L1 [22] parton density functions. Signal samples are produced for different $LQ$ masses between 200 and 360 GeV. The corresponding cross sections at NLO are listed in Table I.

Diboson ($W\bar{W}$, $WZ$ and $ZZ$) background samples are produced with PYTHIA making use of the parton distribution functions CTEQ6L1. The $tt$ and $V(V = W$ or $Z)$+jets events are simulated with the matrix-element generator ALPGEN [23], interfaced to PYTHIA for subsequent parton showering and hadronization. Single top quark production is simulated using COMPTHEP [24]. The cross sections for background processes are calculated at NLO (diboson [25]) and next-to-next-to-leading order (NNLO) ($V+$jets [26] and $t\bar{t}$ [27]). We correct the generated spectrum of the transverse momentum ($p_T$) of the $Z$ boson in MC to match a corresponding dedicated measurement [28]. The $p_T$ spectrum of the $W$ boson is corrected taking into account the differences between predicted $Z$ and $W$ boson $p_T$ spectra at NNLO [29].

A full GEANT-based detector simulation program [30], followed by the same reconstruction program as utilized for data, is used to process signal and background events from MC. In order to model detector noise and contributions from the presence of additional $p\bar{p}$ interactions, events from randomly selected beam crossings with the same instantaneous luminosity profile as data are overlaid on the simulated events. Background from multijet production (MJ), where one of the jets mimics an electron, is evaluated from data using a data driven technique [31]. In MC simulations, electron energies are corrected so they match those obtained from data. In addition, residual differences in jet energy scale and resolution between data and MC are reduced by applying dedicated corrections to MC events.

In the $eqv_qq'$ final state, it is not known a priori how to assign the jets to the leptoquark decaying to $eq$ or $\nu_eq'$. Therefore, to reconstruct the properties such as mass and $p_T$ of the leptoquarks from the final products, an algorithm is needed to choose the best pairing. We do not impose a requirement on the number of jets, but we use only the two leading $p_T$ jets for pairings. There are two possible combinations, corresponding to the leading jet pairing with either the electron or the neutrino. We found that it is most effective to choose the pairing that minimizes the difference between the transverse masses, $M_T = \sqrt{E_T^2 - \vec{p}_T^2}$, where $E_T$ and $\vec{p}_T$ are the transverse energy and the transverse momentum vector of the two $LQ$s. This pairing algorithm is successful in making the correct assignment in about 75% of MC signal events.

Events are selected to be consistent with the $LQ\ell \ell' \rightarrow eqv_qq'$ process. We require one electron with $p_T > 15$ GeV in the central calorimeter region $|\eta_e| < 1.1$; $E_T > 15$ GeV, to be consistent with the undetected neutrino; and at least two jets with $p_T > 20$ GeV and $|\eta_{\text{jet}}| < 2.5$. To suppress MJ background, events are required to satisfy $E_T/50 + M_T^{\text{meas}}/70 \geq 1$, where $M_T^{\text{meas}}$ is the transverse mass of the $(e, \nu)$ combination, and $E_T$ and $M_T^{\text{meas}}$ are in GeV.

### Table I: Scalar $LQ$ pair production cross sections, calculated at NLO, for different $M_{LQ}$ [3].

<table>
<thead>
<tr>
<th>$M_{LQ}$ (GeV)</th>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma$ (fb)</td>
<td>268</td>
<td>193</td>
<td>141</td>
<td>103</td>
<td>76</td>
<td>56</td>
<td>42</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$M_{LQ}$ (GeV)</th>
<th>280</th>
<th>290</th>
<th>300</th>
<th>310</th>
<th>320</th>
<th>340</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma$ (fb)</td>
<td>23</td>
<td>17</td>
<td>13</td>
<td>10</td>
<td>7.4</td>
<td>4.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>
TABLE II: Event counts and the predicted number of signal events for \( M_{LQ} = 260 \text{ GeV} \) and \( \beta = 0.5 \) after each selection requirement.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Data</th>
<th>Total background</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preselection ( M_{T}^{\ell} &gt; 110 \text{ GeV} )</td>
<td>65992</td>
<td>65703 ± 5958</td>
<td>50 ± 7</td>
</tr>
<tr>
<td>( \sum M_{LQ} &gt; 350 \text{ GeV} )</td>
<td>990</td>
<td>986 ± 82</td>
<td>34 ± 5</td>
</tr>
<tr>
<td>( S_{T} &gt; 450 \text{ GeV} )</td>
<td>64</td>
<td>55 ± 4</td>
<td>27 ± 4</td>
</tr>
<tr>
<td>( \sum M_{LQ} &gt; 350 \text{ GeV} )</td>
<td>15</td>
<td>15 ± 1</td>
<td>24 ± 3</td>
</tr>
</tbody>
</table>

At this stage we observe 65992 data events, while we expect \( 65703 \pm 61 \text{(stat)} \pm 5958 \text{(sys)} \) from SM background and 50.4 ± 0.4( stat ) ± 6.8(sy s) events from scalar \( LQ \) production for \( M_{LQ} = 260 \text{ GeV} \) and \( \beta = 0.5 \). Figure 1(a) shows the \( M_{T}^{\ell} \) distribution for the data and SM processes. Data are consistent with the SM predictions. To reduce the dominant SM \( V+\text{jets} \) background, we require \( M_{T}^{\ell} \geq 110 \text{ GeV} \). The pairing algorithm described previously allows us to reconstruct \( M_{LQ} \). Since the longitudinal component of the neutrino momentum, \( p_{\nu} \), is not measurable, we reconstruct only the visible mass of the decay \( LQ \rightarrow \nu \nu q' \) as \( M_{LQ} = M(\text{jet} + \nu_{\text{vis}}) \), where the four vector of \( \nu_{\text{vis}} \) is given as \( (\vec{p}_{\nu}, \vec{p}_{\nu}, 0, E_{T}) \). Figure 1(b) shows the distribution of the sum \( \sum M_{LQ} \) of the invariant mass of the decay \( LQ \rightarrow e\nu q' \) and the visible mass of the decay \( LQ \rightarrow e\nu q' \) after the requirement \( M_{T}^{\ell} \geq 110 \text{ GeV} \). We then use \( \sum M_{LQ} \) to reduce SM backgrounds, further requiring that \( \sum M_{LQ} > 350 \text{ GeV} \). Finally, we require that the scalar sum of the \( p_{T} \) of the lepton, the \( E_{T} \), and the two jets, \( S_{T} \), shown in Fig. 1(c) after all selections, be greater than 450 GeV. Selection criteria are optimized to achieve the best expected sensitivity for \( M_{LQ} = 260 \text{ GeV} \). This yields 15 observed events for an expected background of \( 14.8 \pm 0.6 \text{(stat)} \pm 1.1 \text{(sys)} \) events. The event counts after each requirement are shown in Table II.

Systematic uncertainties which affect only the normalization of the background and the signal efficiency include uncertainties on cross sections of signal (10%) and background (6% – 10%) processes, normalization of the MJ background (20%), integrated luminosity (6.1%), and lepton trigger and identification (4%). Uncertainties which also affect the differential distribution of \( S_{T} \) which is the quantity used to set the limits on \( LQ \) are due to the jet energy resolution and scale, jet identification efficiency, parton distribution functions, and the modeling of the jet \( p_{T} \) distribution of the dominant \( W+\text{jets} \) background. Their impacts are evaluated by repeating the analysis with values varied by \( \pm 1 \) standard deviation (SD). For the uncertainty on the jet \( p_{T} \) modeling, the impact is estimated by comparing the jet \( p_{T} \) distributions between ALPGEN and data unfolded to particle level from the recent D0 measurement [32]. The ratio is applied as weight to the \( W+\text{jets} \) jet \( p_{T} \) distribution, and the new distribution is taken as \( \pm 1 \) SD band.

The distribution of the \( S_{T} \) after all selection requirements, shown in Fig. 1(d), is used as a discriminant to

![Fig. 1](attachment://image.png)

FIG. 1: (color online) (a) \( M_{T}^{\ell} \) distribution after preselection, (b) \( \sum M_{LQ} \) for \( M_{T}^{\ell} > 110 \text{ GeV} \), (c) the \( S_{T} \) for \( M_{T}^{\ell} > 110 \text{ GeV} \) and \( \sum M_{LQ} > 350 \text{ GeV} \), and (d) the \( S_{T} \) distribution after the final selection, which is used to set an upper limit on the \( LQ \) pair production cross section.
set an upper limit on the $LQ$ pair production cross section in the $eq\nu'q'$ channel. For each generated $M_{LQ}$, the limit is calculated at the 95% C.L. using the semi-frequentist $CL_s$ method based on a Poisson log-likelihood test statistic $s$. Signal and background normalizations and shape variations due to systematic uncertainties are incorporated assuming Gaussian priors. The best fit to the background distributions is evaluated by minimizing a profile likelihood function with respect to the observed data and various sources of uncertainty, maintaining all correlations among systematic uncertainties [34]. Limits on the cross section multiplied by the branching fraction and the theoretical $LQ$ cross section for $\beta = 0.5$ are shown in Fig. 2. The limit on the $LQ$ mass as a function of $\beta$ is determined as shown in Fig. 3, and compared to the previous D0 [10], CMS [11, 12], and ATLAS [13] results.

In summary, we have searched for scalar leptoquark pair production in the $eq\nu'q'$ final state in 5.4 fb$^{-1}$ of integrated luminosity of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. In the absence of a signal, we exclude the production of first generation leptoquarks with $M_{LQ} < 326$ GeV for $\beta = 0.5$ at the 95% C.L.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACYT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

FIG. 2: (color online) Expected and observed upper limits calculated at the 95% C.L. on the $LQ$ cross section as a function of $M_{LQ}$ for a scalar leptoquark compared with the NLO prediction for $\beta = 0.5$. The NLO cross section is shown for different choices of the renormalization and factorization scales, $\mu = M_{LQ}$, $\mu = 0.5 \times M_{LQ}$, and $\mu = 2 \times M_{LQ}$.

FIG. 3: (color online) 95% C.L. observed limit for $\mu = M_{LQ}$ on the leptoquark mass as a function of $\beta$ compared with the previous D0 result [10], and CMS [11, 12] and ATLAS [13] results.
[17] The pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$, where $\theta$ is the polar angle with respect to the proton beam direction.