Search for a heavy neutral gauge boson in the dielectron channel
with 5.4 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

L. Stutte, IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France

K. Soustruznik, SAN, IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France

M. Wayne, Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada

M. Wobisch, II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

A. White, 19 M. White, 20 M. Weber, Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany

LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

M. Wayne, 21 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil

M. Vesterinen, FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

B. Tuchming, FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

A. White, 19 M. White, 20 M. Weber, Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany

S. Zelitch, 22 B. Zhou, 23 I.A. Vasilyev, Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

V. Simak, 24 Institut für Physik, Universität Mainz, Mainz, Germany

L. Stutte, 5 Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Universidade Federal do ABC, Santo André, Brazil
5 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6 Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada
7 University of Science and Technology of China, Hefei, People’s Republic of China
8 Universidad de los Andes, Bogotá, Colombia
9 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
10 Czech Technical University in Prague, Prague, Czech Republic
11 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12 Universidad San Francisco de Quito, Quito, Ecuador
13 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
14 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
15 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
16 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
17 LPNHE, Universités Paris VI et VII, CNRS/IN2P3, Paris, France
18 CEA, Ifsa, SPP, Saclay, France
19 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
20 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21 II. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
22 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
23 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
24 Institut für Physik, Universität Mainz, Mainz, Germany
25 Ludwig-Maximilians-Universität München, München, Germany
26 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
27 Panjab University, Chandigarh, India
28 Delhi University, Delhi, India
29 Tata Institute of Fundamental Research, Mumbai, India
30 University College Dublin, Dublin, Ireland
31 Korea Detector Laboratory, Korea University, Seoul, Korea
32 CINVESTAV, Mexico City, Mexico
33 FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
34 Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
35 Joint Institute for Nuclear Research, Dubna, Russia
36 Institute for Theoretical and Experimental Physics, Moscow, Russia
37 Moscow State University, Moscow, Russia
38 Institute for High Energy Physics, Protvino, Russia
39 Petersburskii Physics Institute, St. Petersburg, Russia
40 Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden
41 Lancaster University, Lancaster LA1 4YB, United Kingdom
42 Imperial College London, London SW7 2AZ, United Kingdom
43 The University of Manchester, Manchester M13 9PL, United Kingdom
44 University of Arizona, Tucson, Arizona 85721, USA
We report the results of a search for a heavy neutral gauge boson Z' decaying into the dielectron final state using data corresponding to an integrated luminosity of 5.4 fb$^{-1}$ collected by the D0 experiment at the Fermilab Tevatron Collider. No significant excess above the standard model prediction is observed in the dielectron invariant-mass spectrum. We set 95% C.L. upper limits on cross section limits are used to determine lower mass limits for Z' bosons in a variety of models. For the sequential standard model Z' boson a lower mass limit of 1023 GeV is obtained.

PACS numbers: 13.85 Rm, 14.70 Pw

The gauge group structure of the standard model (SM), $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$, can be extended with an additional $U(1)$ group, which may arise in models derived from grand unified theories (GUT) that are based on groups with rank larger than four $[1]$. Additional $U(1)$ groups can also arise from higher dimensional con-structions like string compactifications. In many models of GUT symmetry breaking, $U(1)$ groups survive at relatively low energies, leading to corresponding neutral gauge bosons, commonly referred to as Z' bosons $[2]$. Such Z' bosons typically couple to SM fermions via the electroweak interaction, and can be observed at hadron colliders as narrow resonances through the process $q \bar{q} \rightarrow Z' \rightarrow e^+ e^-$. There is no simple general parametrization that can be applied to all the Z' models. Nevertheless, the models can be distinguished according to the strength of the gauge coupling, $g_{Z'}$, for the additional $U(1)$ group. The models with coupling of electroweak strength are called canonical. The sequential standard model (SSM)
Z’ boson is a canonical example, where the SSM Z’ boson (Z’_{SUSY}) is defined to have the same couplings as the SM Z boson. The SSM Z’ boson is often used as benchmark [2,3]. An additional example of a canonical model is the special non-canonical model of the SSM where \(Z \rightarrow \epsilon \phi \) that can mix and, at the TeV scale, can give rise to additional Z’ bosons through the linear combination

\[Z'(\theta) = Z'_X \sin \theta + Z'_Y \cos \theta, \tag{1} \]

where \(0 \leq \theta < \pi \) is a mixing angle. The most commonly referenced Z’ boson models arising from \(E_6 \) are summarized in Table I [3].

An example of a non-canonical model is the \(U(1)_X \) Stueckelberg extension of the standard model (StSM) that gives rise to a very narrow Z’ boson [7,8]. The Stueckelberg mechanism allows for the possibility of an Abelian gauge boson to gain mass without the requirement of a Higgs mechanism. The new parameters that are introduced in this model are the StSM mass mixing parameter, \(\epsilon \), and the Z’ boson mass, \(M_{Z'} \). In the limit \(\epsilon \rightarrow 0 \), the Stueckelberg sector decouples from the SM [3].

In this Letter, we report on a search for a Z’ boson decaying into an electron pair with the D0 detector at the Fermilab Tevatron Collider, where protons and antiprotons collide at \(\sqrt{s} = 1.96 \) TeV. A Z’ boson would appear as a narrow resonance in the ee invariant mass spectrum, with a natural width smaller than the resolution of the D0 electromagnetic calorimeter. A previous Tevatron search by the CDF collaboration [10], corresponding to 2.5 fb\(^{-1}\) of integrated luminosity, sets a lower mass limit on SSM Z’ bosons of 963 GeV and reports a discrepancy over the expected SM background at \(M_{ee} \approx 240 \) GeV equivalent to 2.5 standard deviations. The CDF collaboration has also performed a search in the \(Z' \rightarrow \mu \mu \) channel [11], corresponding to 2.3 fb\(^{-1}\) of integrated luminosity, with 95% C.L. upper limits on \(\sigma(pp \rightarrow Z') \times BR(Z' \rightarrow \mu \mu) \) ranging from \(50 \) fb to \(3.2 \) fb for \(M_{Z'} \) between 175 GeV and 1100 GeV.

The D0 detector [12] is composed of a central tracking system surrounded by a 2 T superconducting solenoidal magnet and a central preshower detector (CPS), a calorimeter, and a muon spectrometer. The central tracking system includes a silicon microstrip tracker (SMT) and a scintillating fiber tracker (CFT) that are designed to provide coverage for particles in the pseudorapidity range \(|\eta| < 3 \), where \(\eta = -\ln[\tan(\theta/2)] \), and \(\theta \) is the polar angle with respect to the proton beam direction. The azimuthal angle is denoted by \(\phi \). The CPS is located between the solenoid and the inner layer of the central calorimeter and is formed of approximately one radiation length of lead absorber followed by three layers of scintillating strips. The calorimeter consists of a central section (CC) covering \(|\eta| \lesssim 1.1 \) and two end calorimeters (EC) that extend the EM coverage to \(\eta \approx 4.1 \), with all three sections housed in separate cryostats [13]. Each section consists of an inner electromagnetic (EM) section, and an outer hadronic. The EM calorimeter is segmented into four longitudinal layers (EM\(_i \), \(i = 1, \ldots, 4 \)) with transverse segmentation of \(\Delta \eta \times \Delta \phi = 0.1 \times 0.1 \), except for the finely segmented third layer where it is \(0.05 \times 0.05 \). The muon system, covering \(|\eta| < 2 \), is located beyond the calorimeter and is composed of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T iron toroidal magnets, and followed by two similar layers after the toroids. The luminosity is measured using plastic scintillator arrays in front of the end calorimeters. The data acquisition system includes a three-level trigger, designed to accommodate the high instantaneous luminosity. The data sample was collected between July 2002 and June 2009 using triggers requiring at least two clusters of energy deposits in the EM calorimeter and corresponding to an integrated luminosity of \(5.4 \pm 0.3 \) fb\(^{-1}\) [14].

The event selection requires two isolated electron candidates in the central section of the calorimeter. An electron candidate is characterized by an EM cluster with transverse momentum \(p_T > 25 \) GeV and \(|\eta| < 1.1 \), reconstructed in a cone of radius \(R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4 \). At least 97% of the EM cluster energy must be deposited in the EM section of the calorimeter and its energy must be isolated in the calorimeter, \([E_{\text{tot}}(0.4) - E_{\text{EM}}(0.2)]/E_{\text{EM}}(0.2) < 0.07 \), where \(E_{\text{tot}}(R) \) and \(E_{\text{EM}}(R) \) are the total energy and the energy in the EM section, respectively, within a cone of radius \(R \) around the electron direction. In addition, the EM cluster is required to be consistent with an electron shower shape, using a chi-squared test and a neural network discriminant [15]. The EM cluster is required to be spatially matched to either a reconstructed track or a pattern of hits in the SMT and CFT consistent with the passage of an electron. The scalar sum of the \(p_T \) of all tracks originating from the pp interaction vertex (PV) in an annulus of 0.05 < \(R < 0.4 \) around the cluster is required to be less than 2.5 GeV. Events are only considered if the PV lies within 60 cm of the geometrical center of the detector in the coordinate along the beam axis to

<table>
<thead>
<tr>
<th>Model</th>
<th>(\sin \theta)</th>
<th>(\cos \theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z'_X)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(Z'_Y)</td>
<td>(\sqrt{3}/8)</td>
<td>(\sqrt{5}/8)</td>
</tr>
<tr>
<td>(Z'_I)</td>
<td>(\sqrt{5}/8)</td>
<td>(-\sqrt{3}/8)</td>
</tr>
<tr>
<td>(Z'_{a_1})</td>
<td>(3\sqrt{6}/8)</td>
<td>(-\sqrt{15}/8)</td>
</tr>
<tr>
<td>(Z'_{N})</td>
<td>1/4</td>
<td>(-\sqrt{15}/4)</td>
</tr>
</tbody>
</table>
be fully within the SMT acceptance. The two electron candidates are not required to have opposite charges to avoid losses due to charge misidentification. The data sample consists of 185,264 events that satisfy these selection criteria in the dielectron invariant mass control sample. Avoiding losses due to charge misidentification, the data candidates are not required to have opposite charges to be fully within the SMT acceptance. The two electron candidates are used to extrapolate to higher invariant masses. The data to data in the control region, the background shapes and the fitting range, and is 2%.

The dominant irreducible background is due to the Drell-Yan (DY) process. A mass-dependent k-factor [19] has been applied to the PYTHIA dielectron invariant mass spectrum to account for next-to-next-to-leading order (NNLO) contributions. The main instrumental background originates from the misidentification of one or two jets as electrons. The shape of the invariant mass spectrum for this background is obtained from data by selecting events where the EM clusters fail the \(\chi^2 \) test. Other SM backgrounds include \(Z/\gamma^* \rightarrow \tau\tau, W+\gamma, WW, ZZ, WZ, W+ \) jets, \(tt \), and \(\gamma\gamma \) production. The contribution of these background processes is small (\(\sim 0.6\% \)) and is estimated using PYTHIA corrected for higher order contributions [20-22].

The normalization of the various background contributions is determined by fitting the invariant mass spectrum of the data to a superposition of the backgrounds in a control region around the \(Z^* \) boson mass (\(60 < M_{ee} < 150 \text{ GeV} \)), where the existence of \(Z^* \) bosons has been excluded by previous searches [22]. The total number of background events in that region is fixed to the number of events that have been observed in the data. The relative contribution from the DY process and instrumental background is a free parameter, while the contribution from the other SM processes is normalized to their theoretical cross sections. The uncertainty of the background normalization is estimated by varying both the criteria to select the instrumental background sample and the fitting range, and is 2%.

Having normalized the various background contributions to data in the control region, the background shapes are used to extrapolate to higher invariant masses. The measured \(ee \) invariant mass spectrum, superimposed on the expected backgrounds for the full mass range studied, is shown in Fig. 1. The data and expected background are generally in good agreement for the full invariant mass range studied, with a \(\chi^2 \) over degrees of freedom equal to 118.5/113.

In the absence of a heavy resonance signal, the \(ee \) invariant mass distribution is used to calculate an upper limit on the production cross section of \(Z^* \) bosons multiplied by the branching ratio into the \(ee \) final state, using a Poisson log-likelihood ratio (LLR) test statistics [23]. The expected limits are calculated using the median of the LLR distribution for a background-only hypothesis. The observed limit, obtained including all the fluctuations present in the data, is expected to be contained in the \(\pm 1 \) and \(\pm 2 \) standard deviations region with a probability of 68% and 95%, respectively. An observed limit significantly outside the expected range would indicate...
The observed dielectron invariant mass spectrum arises only from the backgrounds considered in the analysis. Figure 2 shows these limits together with the ±1 and ±2 standard deviation bands on the expected limit, and the cross section predictions for SSM and E6 Z’ bosons, where a constant k-factor of 1.3 [25] has been applied to the PYTHIA cross section. Since this analysis searches for a resonance instead of an enhancement in the total cross section, signal cross section predictions are calculated by integrating over the region \([M_{Z'} - 10 \times \Gamma_{Z'}, \infty]\), where \(\Gamma_{Z'}\) is the width of the SSM Z’ boson, thus excluding Z’ boson events which do not contribute to the resonant region. For \(M_{Z'} < 500\) GeV the difference between the cross section in the region defined above and the total cross section is less than 5%, while for a \(M_{Z'} = 1\) TeV SSM Z’ boson it is ~40%. The mass limits on the specific models of Z’ bosons considered are given in Table III.

These limits can be translated into upper limits on the \(U(1)_{Z'}\) gauge coupling, \(g_{Z'}/g_{Z'}\) [26], as a function of \(M_{Z'}\). Figure 3 illustrates the observed upper limits on \(g_{Z'}/g_{Z'}\) [26] for the \(Z'\) model.

Cross sections are calculated as a function of \(Z'\) boson mass to interpret the observed upper limits on \(\sigma (p\bar{p} \rightarrow Z') \times BR (Z' \rightarrow ee)\) as mass limits for a StSM Z’ boson. Figure 4 shows the observed and expected limits and the cross section predictions for the StSM Z’ boson for several \(\epsilon\) values from 0.02 to 0.06 [27]. The mass limits are summarized in Table III.

In summary, we have searched for a heavy narrow resonance in the ee invariant mass spectra, using 5.4 fb\(^{-1}\) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The observed spectrum agrees with the total background expected from SM processes and instrumental backgrounds. No evidence for physics beyond the SM is observed. For a \(Z'\) boson...
TABLE II: Expected and observed 95% C.L. upper limits on the production cross section multiplied by the branching ratio, $\sigma (p \bar{p} \to Z') \times BR(Z' \to ee)$.

<table>
<thead>
<tr>
<th>Z' Boson Mass (GeV)</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>49</td>
<td>22</td>
</tr>
<tr>
<td>200</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td>225</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>250</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>275</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>300</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>325</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>350</td>
<td>11</td>
<td>7.0</td>
</tr>
<tr>
<td>375</td>
<td>10</td>
<td>6.9</td>
</tr>
<tr>
<td>400</td>
<td>8.5</td>
<td>7.2</td>
</tr>
<tr>
<td>450</td>
<td>6.8</td>
<td>8.2</td>
</tr>
<tr>
<td>500</td>
<td>5.5</td>
<td>5.4</td>
</tr>
<tr>
<td>550</td>
<td>4.4</td>
<td>6.2</td>
</tr>
<tr>
<td>600</td>
<td>3.7</td>
<td>3.1</td>
</tr>
<tr>
<td>650</td>
<td>3.1</td>
<td>3.9</td>
</tr>
<tr>
<td>700</td>
<td>2.7</td>
<td>3.2</td>
</tr>
<tr>
<td>750</td>
<td>2.4</td>
<td>3.2</td>
</tr>
<tr>
<td>800</td>
<td>2.2</td>
<td>2.6</td>
</tr>
<tr>
<td>850</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>900</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>950</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>1000</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>1050</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>1100</td>
<td>1.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

with SM couplings and with intrinsic width significantly smaller than the detector resolution, we set 95% C.L. upper limits on $\sigma (p \bar{p} \to Z') \times BR(Z' \to ee)$ between 22 fb and 1.9 fb for $M_{Z'}$ between 175 GeV and 1100 GeV. These represent the most stringent constraints to date, and translate into a lower limit on the mass of the SSM Z' boson of 1023 GeV.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

FIG. 4: The observed and expected 95% C.L. upper limits on $\sigma (p \bar{p} \to Z') \times BR(Z' \to ee)$ as a function of $M_{Z'}$, compared to the theoretical predictions for the Z' boson cross sections in the SSM and in the StSM extension for values of ϵ ranging from 0.02 to 0.06. The median expected limits are shown together with the ±1 and ±2 standard deviation bands.

[26] Here $g_{Z'} = \sqrt{\frac{4}{3}} g \cdot \tan \theta_W$, where $g = 0.626$ and $\sin \theta_W = \sqrt{0.23116}$.