Search for supersymmetry using final states with one lepton, jets, and missing transverse momentum using the ATLAS detector in \(\sqrt{s} = 7 \) TeV pp collisions

The ATLAS Collaboration

Many extensions of the standard model predict the existence of new colored particles, such as the squarks (\(\tilde{q} \)) and gluinos (\(\tilde{g} \)) of supersymmetric (SUSY) theories, which could be accessible at the LHC. The dominant SUSY production channels are squark-(anti)squark, squark-gluino, and gluino-gluino pair production. Squarks and gluinos are expected to decay to quarks and gluons and the SUSY partners of the gauge bosons (charginos, \(\tilde{\chi}^{\pm} \), and neutralinos, \(\tilde{\chi}^{0} \)), leading to events with energetic jets. In R-parity conserving SUSY models, the lightest supersymmetric particle (LSP) is stable and escapes detection, giving rise to events with significant missing transverse momentum. In decay chains with charginos (\(\tilde{q}_L \to q\tilde{\chi}^\pm \), \(\tilde{\chi}^0 \to q\bar{q}\tilde{\chi}^\mp \)), chargino decay to the LSP can produce a high-momentum lepton. Currently, the most stringent limits on squark and gluino masses come from the LHC \[3\] and from the Tevatron \[4–8\].

This Letter reports on a search for events with exactly one isolated high-transverse momentum (\(p_T \)) electron or muon, at least three high-\(p_T \) jets, and significant missing transverse momentum. An exact definition of the signal region will be given elsewhere in this Letter. From an experimental point of view, the requirement of an isolated electron or muon suppresses the QCD multijet background and facilitates triggering on interesting events. In addition to the signal region, three control regions are considered for the most important standard model backgrounds. A combined fit to the observed number of events in these four regions, together with an independent estimate of jets misidentified as leptons in QCD multijet events, is used to search for an excess of events in the signal region.

The analysis is sensitive to any new physics leading to such an excess, and is not optimized for any particular model of SUSY. The results are interpreted within the MSUGRA/CMSSM (minimal supergravity/constrained minimal supersymmetric standard model) framework in terms of limits on the universal scalar and gaugino mass parameters \(m_0 \) and \(m_{1/2} \). These are presented for fixed values of the universal trilinear coupling parameter \(A_0 = 0 \) GeV, \(\tan \beta = 3 \), \(\mu > 0 \) and for equal squark and gluino masses, gluino masses below 700 GeV are excluded at 95% confidence level.

PACS numbers: 12.60.Jv, 14.80.Ly

ALPGEN14 v2.13 are used. Further samples include QCD multijet events, single top production, diboson production, and Drell-Yan dilepton events.

Monte Carlo signal events are generated with Herwig++15 v2.4.2. The SUSY particle spectra and decay modes are calculated with ISAJET16 v7.75. The SUSY samples are normalized using next-to-leading order (NLO) cross sections as determined by Prospino17 and a GEANT4 based19 detector simulation20.

Criteria for electron and muon identification closely follow those described in Ref.21. Electrons in the signal region are required to pass the “tight” selection criteria, with $p_T > 20$ GeV and $|\eta| < 2.47$. Events are always vetoed if a “medium” electron is found in the electromagnetic calorimeter transition region, $1.37 < |\eta| < 1.52$.

Muons are required to be identified either in both ID and MS systems (combined muons) or as a match between an extrapolated ID track and one or more segments in the MS. The ID track is required to have at least one pixel hit, more than five SCT hits, and a number of TRT hits that varies with the pixel hit, more than five SCT hits, and a number of TRT hits that varies with the pixel hit, R.

Criteria for electron and muon identification closely follow those described in Ref.21. Electrons in the signal region are required to pass the “tight” selection criteria, with $p_T > 20$ GeV and $|\eta| < 2.47$. Events are always vetoed if a “medium” electron is found in the electromagnetic calorimeter transition region, $1.37 < |\eta| < 1.52$.

Muons are required to be identified either in both ID and MS systems (combined muons) or as a match between an extrapolated ID track and one or more segments in the MS. The ID track is required to have at least one pixel hit, more than five SCT hits, and a number of TRT hits that varies with the pixel hit, R.

The inputs to this algorithm are clusters of calorimeter material and other effects using calibration factors obtained from Monte Carlo and validated with extensive test-beam and collision-data studies23. If a jet and a “medium” electron are both identified within a distance $\Delta R < 0.2$ of each other, the jet is discarded. Furthermore, identified “medium” electrons or muons are only considered if they satisfy $\Delta R > 0.4$ with respect to the closest remaining jet. Events are discarded if they contain any jet failing basic quality selection criteria, which reject detector noise and non-collision backgrounds24.

The calculation of the missing transverse momentum, E_T^{miss}, is based on the modulus of the vectorial sum of the p_T of the reconstructed objects (jets with $p_T > 20$ GeV, but over the full calorimeter coverage $|\eta| < 4.9$, and the selected lepton), any additional non–isolated muons and the calorimeter clusters not belonging to reconstructed objects.

Events are required to have at least one reconstructed primary vertex with at least five associated tracks. The selection criteria for signal and control regions are based on Monte Carlo studies prior to examining the data. The signal region is defined as follows. At least one identified electron or muon with $p_T > 20$ GeV is required. Events are rejected if they contain a second identified lepton with $p_T > 20$ GeV, because they are the subject of a future analysis. At least three jets with $p_T > 30$ GeV are required, the leading one of which must have $p_T > 60$ GeV.

In order to reduce the background of events with fake E_T^{miss} from mismeasured jets, the missing transverse momentum vector E_T^{miss} is required not to point in the direction of any of the three leading jets: $\Delta \phi(j_i, E_T^{miss}) > 0.2$ ($i = 1, 2, 3$). The transverse mass between the lepton and the missing transverse momentum vector, $m_T = \sqrt{2 \cdot p_T \cdot E_T^{miss} \cdot (1 - \cos(\Delta \phi(\ell, E_T^{miss}))}$, is required to be larger than 100 GeV. E_T^{miss} must exceed 125 GeV and must satisfy $E_T^{miss} > 0.25 m_{\text{eff}}$, where the effective mass m_{eff} is the scalar sum of the p_T of the three leading jets, the p_T of the lepton, and E_T^{miss}. Finally, a cut is applied on the effective mass: $m_{\text{eff}} > 500$ GeV. The efficiency for the SUSY signal in the MSUGRA/CMSSM model defined earlier varies between 0.01% for $m_{1/2} = 100$ GeV and 4% for $m_{1/2} = 350$ GeV, with a smaller dependence on m_0, for the electron channel and the muon channel separately. The inefficiency is dominated by the leptonic branching fractions in the SUSY signal.

Backgrounds from several standard model processes could contaminate the signal region. Top quark pair production and W+jets production backgrounds are estimated from a combined fit to the number of observed events in three control regions, using Monte Carlo simulations to derive the background in the signal region from the control regions. The background determination of QCD multijet production with a jet misidentified as an isolated lepton is purely data driven. Remaining backgrounds from other sources are estimated with simulations.

The three control regions have identical lepton and jet selection criteria as the signal region. The top control region is defined by a window in the two-dimensional plane of 30 GeV < E_T^{miss} < 80 GeV and 40 GeV < m_T < 80 GeV and by requiring that at least one of the three leading jets is tagged as a b–quark jet. For the b-tagging, the secondary vertex algorithm SV025 is used, which, for $p_T = 60$ GeV jets, provides an efficiency of 50% for b-quark jets and a mistag rate of 0.5% for light-quark jets. The W control region is defined by the same window in the $E_T^{miss} - m_T$ plane, but with the requirement that none of the three hardest jets is b-tagged. The QCD mul-
tjet control region is defined by demanding low missing
transverse momentum, $E_T^{\text{miss}} < 40$ GeV, and low trans-
verse mass, $m_T < 40$ GeV. This QCD control region is
only used to estimate the QCD multijet background con-
tribution to other background regions but not to the sig-
nal region. Instead, the electron and muon identification
criteria are relaxed, obtaining a “loose” control sample
that is dominated by QCD jets. A loose-tight matrix
method, in close analogy to that described in Ref. [12], is
then used to estimate the number of QCD multijet events
with fake leptons in the signal region after final selection
criteria: $0.0^{+0.5}_{-0.0}$ in the muon channel and $0.0^{+0.3}_{-0.0}$ in the
electron channel.

Data are compared to expectations in Figure 1. The
standard model backgrounds in the figure are normalized
to the theoretical cross sections, except for the multi-
jet background which is normalized to data in the QCD
multijet control region. The data are in good agreement
with the standard model expectations. After final selec-
tion, one event remains in the signal region in the elec-
tron channel and one event remains in the muon chan-
nel. Figure 1 also shows the expected distributions for
the MSUGRA/CMSSM model point $m_0 = 360$ GeV and
$m_{1/2} = 280$ GeV.

A combined fit to the number of observed events in
the signal and control regions is performed. The as-
sumption that the Monte Carlo is able to predict the
backgrounds in the signal region from the control re-
gions is validated by checking additional control regions
at low m_T and at low E_T^{miss}. The defined control re-
gions are not completely pure, and the combined fit takes
the expected background cross-contaminations into ac-
count. The likelihood function of the fit can be written
as: $L(n | s, b, \theta) = P_b \times P_W \times P_T \times P_Q \times C_{\text{Syst}}$, where n
represents the number of observed events in data, s is the
SUSY signal to be tested, b is the background, and θ
represents the systematic uncertainties, which are treated as
nuisance parameters with a Gaussian probability density
function. The four P functions in the right hand side
are Poisson probability distributions for event counts in
the defined signal (S) and control regions (W, T, and Q
for W, top pair and QCD multijets respectively), and
C_{Syst} represents the constraints on systematic uncertain-
ties, including correlations.

The dominant sources of systematic uncertainties in
the background estimates arise from Monte Carlo mod-
eling of the shape of the E_T^{miss} and m_T distributions
in signal and control regions. These uncertainties are
determined by variation of the Monte Carlo generator, as
well as by variations of internal generator parameters. Fi-
nite statistics in the background control regions also con-
tributes to the uncertainty. Experimental uncertainties
are varied within their determined range and are domi-
nated by the jet energy scale uncertainty [20], b-tagging
uncertainties, and the uncertainty on the luminosity.

Systematic uncertainties on the SUSY signal are esti-

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure1.png}
\caption{Top: E_T^{miss} distribution after lepton and jet selection.
Center: m_T distribution after lepton and jet selection. Bottom:
Effective mass distribution after final selection criteria except for
the cut on the effective mass itself. All plots are made for
the electron and muon channel combined. Yellow bands indicate
the uncertainty on the Monte Carlo prediction from finite Monte
Carlo statistics and from the jet energy scale uncertainty.}
\end{figure}
mated by variation of the factorization and renormalization scales in Prospino and by including the parton density function (PDF) uncertainties using the eigenvector sets provided by CTEQ6 [27]. Uncertainties are calculated separately for the individual production processes. Within the relevant kinematic range, typical uncertainties resulting from scale variations are 10–16%, whereas PDF uncertainties vary from 5% for $\bar{q}q$ production to 15–30% for $\bar{q}g$ production.

The result of the combined fit to signal and control regions, leaving the number of signal events free in the signal region while not allowing for a signal contamination in the other regions, is shown in Table I. The observed number of events in data is consistent with the standard model expectation. Limits are set on contributions of new physics to the signal region. These limits are obtained from a second combined fit to the four regions, this time allowing for a signal in all four regions, and leaving all nuisance parameters free. The limits are then derived from the profile likelihood ratio, $\Lambda(s) = -2(\ln L(n|\hat{s}, \hat{b}, \hat{\theta}) - \ln L(n|\hat{s}, \hat{b}, \theta))$, where \hat{s}, \hat{b} and $\hat{\theta}$ maximize the likelihood function and b and θ maximize the likelihood for a given choice of s. In the fit, s and \hat{s} are constrained to be non-negative. The test statistic is $\Lambda(s)$. The exclusion p-values are obtained from this using pseudo-experiments and the limits set are one-sided upper limits [28].

From the fit to a model with signal events only in the signal region, a 95% CL upper limit on the number of events from new physics in the signal region can be derived. This number is 2.2 in the electron channel and 2.5 in the muon channel. This corresponds to a 95% CL upper limit on the effective cross section for new processes in the signal region, including the effects of experimental acceptance and efficiency, of 0.065 pb for the electron channel and 0.073 pb for the muon channel.

Within the MSUGRA/CMSSM framework, the results are interpreted as limits in the $m_0 - m_{1/2}$ plane, as shown in Figure 2. For the model considered and for equal squark and gluino masses, gluino masses below 700 GeV are excluded at 95% CL. The limits depend only moderately on $\tan \beta$.

In summary, the first ATLAS results on searches for supersymmetry with an isolated electron or muon, jets, and missing transverse momentum have been presented. In a data sample corresponding to 35 pb$^{-1}$, no significant deviations from the standard model expectation are observed. Limits on the cross section for new processes within the experimental acceptance and efficiency are set. For a chosen set of parameters within MSUGRA/CMSSM, and for equal squark and gluino masses, gluino masses below 700 GeV are excluded at 95% CL. These ATLAS results exceed previous limits set by other experiments [3, 6].

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; FOM and NWO, Netherlands; RCU, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
TABLE I: Numbers of observed events in the signal and background control regions, as well as their estimated values from the fit (see text), for the electron (top part) and muon (bottom part) channels. The central values of the fitted sum of backgrounds in the control regions agree with the observations by construction. For comparison, nominal Monte Carlo expectations are given in parentheses for the signal region, the top control region and the W and QCD control region.

<table>
<thead>
<tr>
<th>Electron channel</th>
<th>Signal region</th>
<th>Top region</th>
<th>W region</th>
<th>QCD region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>1</td>
<td>80</td>
<td>202</td>
<td>1464</td>
</tr>
<tr>
<td>Fitted top events</td>
<td>1.34 ± 0.52</td>
<td>65 ± 12</td>
<td>32 ± 16</td>
<td>40 ± 11</td>
</tr>
<tr>
<td>Fitted W/Z events</td>
<td>0.47 ± 0.40</td>
<td>11.2 ± 4.6</td>
<td>161 ± 27</td>
<td>170 ± 34</td>
</tr>
<tr>
<td>Fitted QCD events</td>
<td>0.0^{+0.3}_{-0.0}</td>
<td>3.7 ± 7.6</td>
<td>9 ± 20</td>
<td>1254 ± 51</td>
</tr>
<tr>
<td>Fitted sum of background events</td>
<td>1.81 ± 0.75</td>
<td>80 ± 9</td>
<td>202 ± 14</td>
<td>1464 ± 38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muon channel</th>
<th>Signal region</th>
<th>Top region</th>
<th>W region</th>
<th>QCD region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>1</td>
<td>93</td>
<td>165</td>
<td>346</td>
</tr>
<tr>
<td>Fitted top events</td>
<td>1.76 ± 0.67</td>
<td>85 ± 11</td>
<td>42 ± 19</td>
<td>50 ± 10</td>
</tr>
<tr>
<td>Fitted W/Z events</td>
<td>0.49 ± 0.36</td>
<td>7.7 ± 3.3</td>
<td>120 ± 26</td>
<td>71 ± 16</td>
</tr>
<tr>
<td>Fitted QCD events</td>
<td>0.0^{+0.5}_{-0.0}</td>
<td>0.3 ± 1.2</td>
<td>3 ± 12</td>
<td>225 ± 22</td>
</tr>
<tr>
<td>Fitted sum of background events</td>
<td>2.25 ± 0.94</td>
<td>93 ± 10</td>
<td>165 ± 13</td>
<td>346 ± 19</td>
</tr>
</tbody>
</table>

[10] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP to the centre of the LHC ring and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as \(η = − \ln(\tan(θ/2)) \).
Bellaterra (Barcelona), Spain
University of Belgrade\(^{(a)}\), Institute of Physics, P.O. Box 57, 11001 Belgrade; Vinca Institute of Nuclear Sciences\(^{(b)}\)M. Petrovica Alasa 12-14, 11000 Belgrade, Serbia, Serbia
University of Bergen, Department for Physics and Technology, Allegaten 55, NO - 5007 Bergen, Norway
Lawrence Berkeley National Laboratory and University of California, Physics Division, MS50B-6227, 1 Cyclotron Road, Berkeley, CA 94720, United States of America
Humboldt University, Institute of Physics, Berlin, Newtonstr. 15, D-12489 Berlin, Germany
University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, Sidlerstrasse 5, CH - 3012 Bern, Switzerland
University of California, Physics Division, MS50B-6227, 1 Cyclotron Road, Berkeley, CA 94720, United States of America
State University of New York, Stony Brook, Department of Physics, STB 415 South Street, Waltham, MA 02454, United States of America
Commonwealth Avenue, Boston, MA 02215, United States of America
University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637, United States of America
Pontificia Universidad Católica de Chile, Facultad de Física, Departamento de Física\(^{(a)}\), Avda. Vicuna Mackenna 4860, San Joaquín, Santiago; Universidad Técnica Federico Santa María, Departamento de Física\(^{(b)}\), Avda. Espíritu 1680, Casilla 110-V, Valparaíso, Chile
Institute of High Energy Physics, Chinese Academy of Sciences\(^{(a)}\), P.O. Box 918, 19 Yuquan Road, Shijingshan District, CN - Beijing 100049; University of Science & Technology of China (USTC), Department of Modern Physics\(^{(b)}\), Hefei, CN - Anhui 230026; Nanjing University, Department of Physics\(^{(c)}\), Nanjing, CN - Jiangsu 210093; Shandong University, High Energy Physics Group\(^{(d)}\), Jinan, CN - Shandong 250100, China
Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, FR - 63177 Aubiere Cedex, France
Columbia University, Nevis Laboratory, 136 So. Broadway, Irvington, NY 10533, United States of America
University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, DK - 2100 København 0, Denmark
INFN Gruppo Collegato di Cosenza\(^{(a)}\); Università della Calabria, Dipartimento di Fisica\(^{(b)}\), IT-87036 Arcavacata di Rende, Italy
Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology, (FPACS, AGH-UST), ul. Mickiewicza 30, PL-30059 Cracow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL - 31342 Krakow, Poland
Southern Methodist University, Physics Department, 106 Fondren Science Building, Dallas, TX 75275-0175, United States of America
University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America
DESY, Notkestr. 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany
TU Dortmund, Experimentelle Physik IV, DE - 44221 Dortmund, Germany
Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany
Duke University, Department of Physics, Durham, NC 27708, United States of America
Applied Sciences, 1-1-1 Tennoudai, Tsukuba-shi, JP - Ibaraki 305-8571, Japan

Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, United States of America

Universidad Antonio Narino, Centro de Investigaciones, Cra 3 Este No.47A-15, Bogota, Colombia

University of California, Irvine, Department of Physics & Astronomy, CA 92697-4575, United States of America

INFN Gruppo Collegato di Udine; ICTP, Strada Costiera 11, IT-34014, Trieste; Università di Udine, Dipartimento di Fisica, via delle Scienze 208, IT - 33100 Udine, Italy

University of Illinois, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, United States of America

University of Uppsala, Department of Physics and Astronomy, P.O. Box 516, SE -751 20 Uppsala, Sweden

University of British Columbia, Department of Physics, 6224 Agricultural Road, CA - Vancouver, B.C. V6T 1Z1, Canada

University of Victoria, Department of Physics and Astronomy, P.O. Box 3055, Victoria B.C., V8W 3P6, Canada

Waseda University, WISE, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan

The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL - 76100 Rehovot, Israel

University of Wisconsin, Department of Physics, 1150 University Avenue, WI 53706 Madison, Wisconsin, United States of America

Julius-Maximilians-University of Würzburg, Physikalisches Institute, Am Hubland, 97074 Würzburg, Germany

Bergische Universität, Fachbereich C, Physik, Postfach 100127, Gauss-Strasse 20, D- 42097 Wuppertal, Germany

Yale University, Department of Physics, PO Box 208121, New Haven CT, 06520-8121, United States of America

Yerevan Physics Institute, Alikhanian Brothers Street 2, AM - 375036 Yerevan, Armenia

Centre de Calcul CNRS/IN2P3, Domaine scientifique de la Doua, 27 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Also at TRIUMF, Vancouver, Canada

Also at FPACS, AGH-UST, Cracow, Poland

Also at Department of Physics, University of Coimbra, Coimbra, Portugal

Also at Università di Napoli Parthenope, Napoli, Italy

Also at Institute of Particle Physics (IPP), Canada

Also at Louisiana Tech University, Ruston, USA

Also at Universidade de Lisboa, Lisboa, Portugal

At California State University, Fresno, USA

Also at Faculdade de Ciencias, Universidade de Lisboa and at Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

Also at California Institute of Technology, Pasadena, USA

Also at University of Montreal, Montreal, Canada

Also at Baku Institute of Physics, Baku, Azerbaijan

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

Also at Manhattan College, New York, USA

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

Also at Taiwan Tier-1, ASGC, Academia Sinica, Taipei, Taiwan

Also at School of Physics, Shandong University, Jinan, China

Also at Rutherford Appleton Laboratory, Didcot, UK

Also at Departamento de Física, Universidade de Minho, Braga, Portugal

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, USA

Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

Also at Institute of Physics, Jagiellonian University, Cracow, Poland

Also at Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

Also at Department of Physics, Oxford University, Oxford, UK

Also at CEA, Gif sur Yvette, France

Also at LPNHE, Paris, France

Also at Nanjing University, Nanjing Jiangsu, China

Deceased