In the standard model (SM), the production in proton-proton (pp) collisions of diphoton (γγ) events with large missing transverse energy (E_{T}^{miss}) is mainly due to W/Z + γγ processes. Taking into account the branching ratios of W/Z decays including at least one neutrino, the cross sections are only a few femtobarns for 7 TeV pp collisions. In contrast, some new physics models predict much larger γγ + E_{T}^{miss} rates. This Letter reports the first γγ + E_{T}^{miss} search with LHC data, using data recorded with the ATLAS detector. The results are interpreted in the context of a universal extra dimension (UED) model.

UED models [1] postulate the existence of additional spatial dimensions in which all SM particles can propagate, leading to the existence for each SM particle of a series of excitations, known as a Kaluza-Klein (KK) tower. This analysis considers the case of a single TeV^{-1}-sized UED, with compactification radius R. The masses of the states of successive levels in the tower are separated by ≈ 1/R. For a given KK level, the approximate mass degeneracy of the KK excitations is broken by radiative corrections [2]. The lightest KK particle (LKP) is the KK photon of the first level, denoted γ^*. At the LHC, the main UED process would be production via the strong interaction of a pair of first-level KK quarks and/or gluons [3], which would decay via cascades involving other KK particles until reaching the LKP at the end of the decay chain. If the UED model is embedded in a larger space with N additional eV^{-1}-sized dimensions accessible only to gravity [4], the LKP could decay gravitationally via γ^* → γ + G [5], where G represents one of a tower of eV-spaced graviton states. With two decay chains per event, the final state would be γγ + E_{T}^{miss} + X, where E_{T}^{miss} results from the escaping gravitons and X represents SM particles emitted in the cascade decays.

The UED model considered is defined by specifying R and Λ, the ultraviolet cutoff used in the calculation of radiative corrections to the KK masses. This analysis treats R as a free parameter and, following the theory calculations [2], sets Λ such that ∆R = 20. For 1/R = 700 GeV, the masses of the first-level KK photon, quark, and gluon are 700, 815, and 865 GeV, respectively [6]. The γ^* mass is insensitive to Λ, while other KK masses change by typically a few percent when varying ∆R in the range 10–30. The gravitational decay widths of the KK particles are set by N and M_{pl}, the Planck scale in the (4 + N)-dimensional theory. For the chosen values of N = 6 and M_{pl} = 5 TeV, and provided 1/R < 1 TeV, the LKP is the only KK particle to have an appreciable rate of gravitational decay. The same parameter values were used in the only previous study of this model, in which the D0 experiment excluded at 95% C. L. values of 1/R < 477 GeV [7].

Monte Carlo (MC) signal samples were produced for a range of 1/R values using the implementation [6] of the UED model in PYTHIA [8] version 6.421, and using the MC09 parameter tune [9]. The MC samples were processed through the ATLAS detector simulation [10] based on GEANT4 [11]. In addition to the two high transverse energy (E_T) photons and large E_{T}^{miss}, the signal events typically include several high-E_T jets due to the cascade decays, with the E_T spectrum of the leading jet peaking at ≈ 100 GeV for 1/R = 700 GeV.

The ATLAS detector [12] is a multipurpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and nearly 4π solid angle coverage. ATLAS uses a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The counterclockwise beam direction defines the positive z axis, while the positive x axis points from the collision point to the center of the LHC ring and the positive y axis points upward. The angles φ and θ are the azimuthal and polar angles. The pseudorapidity is defined as...
The reconstruction of photons is described in detail in Ref. [13]. To select photon candidates, EM calorimeter clusters were required to pass several quality criteria and to lie outside problematic calorimeter regions. Photon candidates were required to have $|\eta| < 1.81$ and to be outside the transition region $1.37 < |\eta| < 1.52$ between the barrel and the end-cap calorimeters. The analysis uses a “loose” photon selection, which includes cuts on the energy in the hadronic calorimeter as well as on variables that require the transverse width of the shower, measured in the second EM calorimeter layer, be consistent with the narrow width expected for an EM shower. The loose selection provides a high photon efficiency with modest rejection against the background from jets.

The reconstruction of E_T^{miss} is based on topological calorimeter clusters [14] with $|\eta| < 4.5$ that are seeded by any cell with energy higher than 4 times its noise level. In an iterative procedure, the cluster grows by including all neighboring cells with energy higher than twice the noise, plus all cells neighboring the boundary of this three-dimensional collection. Each cluster is classified as EM or hadronic, depending on its topology, and the cluster energy is calibrated to correct for the noncompensating calorimeter response, energy losses in dead material, and out-of-cluster energies. Events reconstructed with large E_T^{miss} were studied in detail with early data [15]. Rare background events with large transverse energies, unrelated to the collision and concentrated in a few cells, due mainly to discharges and noise, have been observed. Cuts were applied to eliminate such backgrounds, rejecting less than 0.05% of the selected events while having a negligible impact on the signal efficiency.

FIG. 1. E_T spectrum of the leading photon for the $\gamma\gamma$ candidate sample and for UED $1/R = 700 \text{ GeV}$ MC events (normalized to 100 times the leading order (LO) cross section).
selection cuts. The main background source, referred to hereafter as QCD background, arises from a mixture of SM processes including $\gamma\gamma$ production, and γ + jet and multijet events with at least one jet misidentified as a photon. With the loose photon identification, it is expected that γ + jet and multijet events dominate, with only a small $\gamma\gamma$ contribution. The misidentified jet sample provided a model of the E_T^{miss} response for events with jets faking photons. The response for $\gamma\gamma$ events was modeled using the E_T^{miss} spectrum measured in a high purity sample of $Z \rightarrow ee$ events, selected by a combination of kinematic cuts and electron identification requirements [14]. The E_T^{miss} spectrum for $Z \rightarrow ee$ events, which is dominated by the calorimeter response to two genuine EM objects, was verified in MC simulations to model the E_T^{miss} response in SM $\gamma\gamma$ processes, despite their kinematic differences. As shown in Fig. 2, $Z \rightarrow ee$ events typically have somewhat lower E_T^{miss} values than events of the misidentified jet sample, as expected since the presence of jets faking photons should result in a broader E_T^{miss} distribution. The spectrum for the $\gamma\gamma$ candidates, which for low E_T^{miss} is dominated by the QCD background with an unknown mixture of events with zero, one, and two fake photons, lies between these two samples. The E_T^{miss} spectrum of the total QCD background was modeled by a weighted sum of the spectra of the $Z \rightarrow ee$ and misidentified jet samples. The QCD background was normalized to have the same number of events as the $\gamma\gamma$ candidate sample in the region $E_T^{\text{miss}} < 20$ GeV, where any UED signal contribution can be neglected. The relative contributions of the $Z \rightarrow ee$ and misidentified jet samples were determined by fitting the QCD background shape to the E_T^{miss} spectrum of the $\gamma\gamma$ candidates in this same low E_T^{miss} region. The fraction attributed to $\gamma\gamma$ production, as modeled with the $Z \rightarrow ee$ distribution, was determined to be $(36 \pm 22)\%$. The search result is not very sensitive to the exact composition of the QCD background, and the fit error was used to determine systematic uncertainties on the background prediction.

A small additional background results from $W \rightarrow ev$ events, which have genuine E_T^{miss} and which can pass the selection if the electron is misidentified as a photon and the second photon is either a real photon in $W\gamma$ events or a jet faking a photon in $W + jets$ events. A high purity sample of inclusive $W \rightarrow ev$ events was selected by a combination of kinematic and electron identification cuts [14]. Requiring in addition a loose photon with $E_T^\gamma > 25$ GeV, a “$W + \gamma$” sample of only 5 events was selected. Accounting for the probability for an electron to be misidentified as a loose photon, as determined using the $Z \rightarrow ee$ sample, the total background contribution due to $W \rightarrow ev$ events was then estimated to be only $= 0.4$ events. Since the number of $W\gamma$ events was too small to measure their E_T^{miss} spectrum, a sample of $W + jets$ events was used instead, requiring a jet reconstructed with an anti-k_T clustering algorithm [16] with radius parameter 0.4 and $E_T^j > 25$ GeV. The $W(\rightarrow ev) + jets/\gamma$ background contribution was then estimated by normalizing the $W + jets E_T^{miss}$ spectrum to the expected total of $= 0.4$ events, as shown on Fig. 2.

Figure 3 shows the E_T^{miss} spectrum of the $\gamma\gamma$ candidates, superimposed on the total background prediction, as well
TABLE I. The number of observed $\gamma\gamma$ candidates, as well as the SM backgrounds estimated from data and expected UED signal for 1/R values of 500 and 700 GeV, given in various E_T^{miss} ranges. The uncertainties are statistical only. The first row, for $E_T^{\text{miss}} < 20$ GeV, is the control region used to normalize the QCD background to the number of observed $\gamma\gamma$ candidates.

<table>
<thead>
<tr>
<th>E_T^{miss} range (GeV)</th>
<th>Data</th>
<th>Predicted background events</th>
<th>Expected UED signal events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>events</td>
<td>QCD</td>
<td>$W(\rightarrow e\nu) +$ jets/\gamma</td>
</tr>
<tr>
<td>0–20</td>
<td>465</td>
<td>465.0 ± 9.1</td>
<td>465.0 ± 9.1</td>
</tr>
<tr>
<td>20–30</td>
<td>45</td>
<td>40.5 ± 2.2</td>
<td>40.41 ± 2.17</td>
</tr>
<tr>
<td>30–50</td>
<td>9</td>
<td>10.3 ± 1.3</td>
<td>10.13 ± 1.30</td>
</tr>
<tr>
<td>50–75</td>
<td>1</td>
<td>0.93 ± 0.23</td>
<td>0.85 ± 0.23</td>
</tr>
<tr>
<td>>75</td>
<td>0</td>
<td>0.32 ± 0.16</td>
<td>0.28 ± 0.15</td>
</tr>
</tbody>
</table>

as example UED signals. Table I summarizes the number of observed $\gamma\gamma$ candidates, as well as the expected backgrounds and example UED signal contributions, in several E_T^{miss} ranges. The QCD background dominates, and falls steeply with rising E_T^{miss}, while the $W \rightarrow e\nu$ background is very small, and flatter as a function of E_T^{miss}. The UED signals would peak at large values of E_T^{miss}. There is good agreement between the data and predicted background over the entire E_T^{miss} range, with no indication of an excess at high E_T^{miss} values.

The signal search region was chosen to be $E_T^{\text{miss}} > 75$ GeV, before looking at the data, to obtain the best sensitivity to the UED signal. In the signal region, there are zero observed events, compared to an expectation of 0.32 ± 0.16 (stat) $+0.37$ (syst) background events. The systematic uncertainty was derived by studying variations of the background determination, including varying within its error the $\gamma\gamma$ fraction determined in the fit of the QCD background, varying the definition of the misidentified jet sample, and eliminating the photon isolation cut.

The UED signal efficiency, determined from MC simulations, increases smoothly from $\approx 43\%$ for $1/R = 500$ GeV to $\approx 48\%$ for $1/R = 700$ GeV, with the lower efficiencies for smaller $1/R$ due mostly to the $E_T^{\text{miss}} > 75$ GeV definition of the signal region. The various relative systematic uncertainties on the extraction of the UED signal cross section are summarized in Table II, including the dominant 11% uncertainty on the integrated luminosity [17]. Uncertainties on the efficiency for reconstructing and identifying the $\gamma\gamma$ pair arise mainly due to differences between MC simulations and data in the distributions of the photon identification variables, the need to extrapolate to the higher E_T values (see Fig. 1) typical of the UED photons, the impact of the photon quality cuts, varying the scale of the photon E_T cut, and uncertainties in the detailed material composition of the detector. Together these provide a systematic uncertainty of 4%. The influence of pileup, evaluated by comparing MC samples with and without pileup, gives a systematic uncertainty of 2%.

Systematic effects on the E_T^{miss} reconstruction [14], including pileup, varying the cluster energies within the current uncertainties, and varying the expected E_T^{miss} resolution between the measured performance and MC expectations, combine to give a 1% uncertainty on the signal efficiency. Finally, the 1% statistical error on the signal efficiency as determined by MC simulations is treated as a systematic uncertainty on the result. Adding in quadrature, the total systematic uncertainty on the signal yield is 12%.

Given the good agreement between the measured E_T^{miss} spectrum and the expected background, a limit was set on $1/R$ in the specific UED model considered here. A Bayesian approach was used to calculate a limit based on the number of observed and expected events with $E_T^{\text{miss}} > 75$ GeV. A Poisson distribution was used as the likelihood function for the expected number of signal events, and a flat prior was used for the signal cross section. Log-normal priors were used for the various sources of uncertainty, which were treated as nuisance parameters. It was verified that the result is not very sensitive to the detailed form of the assumed priors. Figure 4 depicts the resulting 95% C.L. upper limit within the context of the UED model considered, together with the LO UED cross section as a function of $1/R$. The LO cross section was used since higher order corrections have not been calculated for the UED model.

An uncertainty on the signal cross section due to parton distribution functions (PDF’s) was determined by comparing the predictions using MRST2007 [18] PDF’s with those from the full set of error PDF’s of CTEQ6.6 [19]. The resultant uncertainty, namely $\pm 8\%$ essentially independent of $1/R$, is shown by the width of the theory curve band. The observed 95% C.L. exclusion region is $1/R < 729$ GeV. The result depends weakly on the systematic

TABLE II. Relative systematic uncertainties on the expected UED signal yield. For more details, see the text.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td>11%</td>
</tr>
<tr>
<td>Photon reconstruction and identification</td>
<td>4%</td>
</tr>
<tr>
<td>Effect of pileup</td>
<td>2%</td>
</tr>
<tr>
<td>E_T^{miss} reconstruction and scale</td>
<td>1%</td>
</tr>
<tr>
<td>Signal MC statistics</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>12%</td>
</tr>
</tbody>
</table>
FIG. 4 (color online). 95% C.L. upper limits on the UED production cross section, and the LO theory cross section prediction, as a function of $1/R$. The shaded band shows the PDF uncertainty.

uncertainties, and would only increase to 732 GeV if they were neglected. Changing the E_T^{miss} cut to 60 or 90 GeV would change the limit by only a few GeV. A cross-check using a higher purity $\gamma\gamma$ sample, achieved by requiring that both photons pass tighter identification cuts that reject more of the background from jets, produced a consistent result.

In conclusion, a search for $\gamma\gamma$ events with large E_T^{miss}, conducted using a 3.1 pb$^{-1}$ sample of 7 TeV pp collisions recorded with the ATLAS detector at the LHC, found no evidence of an excess above the SM prediction. The results were used to set limits on a specific model with one UED and gravity-induced LKP decays, excluding at the 95% C.L. values of $1/R < 729$ GeV, and significantly surpassing the only existing experimental limit [7] on this model.

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICyT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

(ATLAS Collaboration)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istanbul Technical University, Faculty of Arts and Sciences</td>
<td>Department of Physics, 34469, Maslak, Istanbul, Turkey</td>
</tr>
<tr>
<td>INFN Sezione di Bologna, Bologna, Italy</td>
<td></td>
</tr>
<tr>
<td>University of Bologna, Dipartimento di Fisica, viale C. Berti Pichat</td>
<td>6/2, IT - 40127 Bologna, Italy</td>
</tr>
<tr>
<td>University of Bonn, Physikalisches Institut, Nussallee 12, D - 53115 Bonn, Germany</td>
<td></td>
</tr>
<tr>
<td>Boston University, Department of Physics</td>
<td>590 Commonwealth Avenue, Boston, Massachusetts 02215, USA</td>
</tr>
<tr>
<td>Brandeis University, Department of Physics</td>
<td>MS057, 415 South Street, Waltham, Massachusetts 02454, USA</td>
</tr>
<tr>
<td>Universidade Federal do Rio De Janeiro, COPPE/EE/IF</td>
<td>Caixa Postal 68528, Ilha do Fundao, BR - 21945-970 Rio de Janeiro, Brazil</td>
</tr>
<tr>
<td>Universidade de Sao Paulo, Instituto de Fisica, R.do Matao Trav: R.187, Sao Paulo - SP</td>
<td>05508 - 900, Brazil</td>
</tr>
<tr>
<td>Brookhaven National Laboratory</td>
<td>Physics Department, Building 510A, Upton, New York 11973, USA</td>
</tr>
<tr>
<td>National Institute of Physics and Nuclear Engineering Bucharest-Magurele</td>
<td>Str. Atomistilor 407, P.O. Box MG-6, R-077125, Romania</td>
</tr>
<tr>
<td>University Politehnica Bucharest, Rectorat - AN 001, 313 Splaiul Independentei</td>
<td>sector 6, 060042 Bucuresti, Romania</td>
</tr>
<tr>
<td>West University in Timisoara, Bd. Vasile Parvan 4, Timisoara, Romania</td>
<td></td>
</tr>
<tr>
<td>Universidad de Buenos Aires, FCEyN</td>
<td>Dto. Fisico, Pab I - C. Universitaria, 1428 Buenos Aires, Argentina</td>
</tr>
<tr>
<td>University of Cambridge, Cavendish Laboratory</td>
<td>J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom</td>
</tr>
<tr>
<td>Carleton University, Department of Physics</td>
<td>1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada</td>
</tr>
<tr>
<td>CERN</td>
<td>CH - 1211 Geneva 23, Switzerland</td>
</tr>
<tr>
<td>University of Chicago, Enrico Fermi Institute</td>
<td>5640 S. Ellis Avenue, Chicago, Illinois 60637, USA</td>
</tr>
<tr>
<td>Pontificia Universidad Católica de Chile, Facultad de Fisica, Departamento de Fisica, Avda. Vicuna Mackenna 4860, San Joaquin, Santiago, Chile</td>
<td></td>
</tr>
<tr>
<td>Universidad Técnica Federico Santa María, Departamento de Fisica, Avda. España 1680, Casilla 110-V, Valparaiso, Chile</td>
<td></td>
</tr>
<tr>
<td>Institute of High Energy Physics, Chinese Academy of Sciences</td>
<td>P.O. Box 918, 19 Yauquan Road, Shijing Shan District, CN - Beijing 100049, China</td>
</tr>
<tr>
<td>University of Science & Technology of China (USTC), Department of Modern Physics</td>
<td>Hefei, CN - Anhui 230026, China</td>
</tr>
<tr>
<td>Nanjing University, Department of Physics, Nanjing, CN - Jiangsu 210093, China</td>
<td></td>
</tr>
<tr>
<td>Shandong University, High Energy Physics Group, Jinan, CN - Shandong 250100, China</td>
<td></td>
</tr>
<tr>
<td>Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, FR - 63177 Aubiere Cedex, France</td>
<td></td>
</tr>
<tr>
<td>Columbia University, Nevis Laboratory</td>
<td>136 So. Broadway, Irvington, New York 10533, USA</td>
</tr>
<tr>
<td>University of Copenhagen, Niels Bohr Institute</td>
<td>Blegdamsvej 17, DK - 2100 Kobenhavn 0, Denmark</td>
</tr>
<tr>
<td>INFN Gruppo Collegato di Cosenza, Cosenza, Italy</td>
<td></td>
</tr>
<tr>
<td>Universität der Calabria, Dipartimento di Fisica</td>
<td>IT-87036 Arcavacata di Rende, Italy</td>
</tr>
<tr>
<td>Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology, (FPACS, AGH-UST), ul. Radzikowskiego 152, PL-30059 Cracow, Poland</td>
<td></td>
</tr>
<tr>
<td>The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, al. Mickiewicza 30, PL-30059 Cracow, Poland</td>
<td></td>
</tr>
<tr>
<td>Southern Methodist University, Physics Department, 106 Fondren Science Building</td>
<td>Dallas, Texas 75275-0175, USA</td>
</tr>
<tr>
<td>University of Texas at Dallas</td>
<td>800 West Campbell Road, Richardson, Texas 75080-3021, USA</td>
</tr>
<tr>
<td>DESY, Notkestr. 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany</td>
<td></td>
</tr>
<tr>
<td>TU Dortmund, Experimentelle Physik IV, DE - 44221 Dortmund, Germany</td>
<td></td>
</tr>
<tr>
<td>Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany</td>
<td></td>
</tr>
<tr>
<td>Duke University, Department of Physics, Durham, North Carolina 27708, USA</td>
<td></td>
</tr>
<tr>
<td>University of Edinburgh, School of Physics & Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Fachhochschule Wiener Neustadt: Johannes Gutenbergstrasse 3 AT - 2700 Wiener Neustadt, Austria</td>
<td></td>
</tr>
<tr>
<td>INFN Laboratori Nazionali di Frascati, via Enrico Fermi 40, IT-00044 Frascati, Italy</td>
<td></td>
</tr>
<tr>
<td>Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Hermann-Herder Str. 3, D - 79104 Freiburg i.Br., Germany</td>
<td></td>
</tr>
<tr>
<td>Université de Genève, Section de Physique, 24 rue Ernest Ansermet, CH - 1211 Genève 4, Switzerland</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Genova, Genova, Italy</td>
<td></td>
</tr>
<tr>
<td>Università di Genova, Dipartimento di Fisica, via Dodecaneso 33, IT - 16146 Genova, Italy</td>
<td></td>
</tr>
<tr>
<td>Institute of Physics of the Georgian Academy of Sciences, 6 Tamarashvili Street</td>
<td>GE - 380077 Tbilisi; Tbilisi State University, HEP Institute, University St. 9, GE - 380086 Tbilisi, Georgia</td>
</tr>
<tr>
<td>Justus-Liebig-Universität Giessen, II Physikalisches Institut, Heinrich-Buff Ring 16, D-35392 Giessen, Germany</td>
<td></td>
</tr>
<tr>
<td>University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Georg-August-Universität, II. Physikalisches Institut, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany</td>
<td></td>
</tr>
<tr>
<td>LPSC, CNRS/IN2P3 and Université Joseph Fourier Grenoble, 53 avenue des Martyrs, FR-38026 Grenoble Cedex, France</td>
<td></td>
</tr>
<tr>
<td>Hampton University, Department of Physics, Hampton, Virginia 23668, USA</td>
<td></td>
</tr>
<tr>
<td>Harvard University, Laboratory for Particle Physics and Cosmology, 18 Hammond Street, Cambridge, Massachusetts 02138, USA</td>
<td></td>
</tr>
<tr>
<td>Ruprecht-Karls-Universität Heidelberg: Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany</td>
<td></td>
</tr>
<tr>
<td>Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany</td>
<td></td>
</tr>
</tbody>
</table>